Probe Population Based Initialization and Genetic Pool Based Reproduction for Evolutionary Bi-Objective Feature Selection

初始化 选择(遗传算法) 人工智能 人口 特征选择 进化计算 计算机科学 进化算法 遗传算法 繁殖 机器学习 模式识别(心理学) 生物 遗传学 人口学 社会学 程序设计语言
作者
Hang Xu,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tevc.2024.3403655
摘要

Feature selection can be treated as a bi-objective optimization problem, if aimed at minimizing both classification error and number of selected features, suitable for multi-objective evolutionary algorithms (MOEAs) to solve. However, traditional MOEAs would encounter setbacks when the number of features explodes to high dimensionality, causing difficulties for searching optimal solutions in large-scale decision space. In this paper, we propose two general methods applicable to integrate with existing MOEA frameworks in addressing bi-objective feature selection, especially for high-dimensional datasets. One based on probe populations for improving initialization is called PPI, and the other based on genetic pools for improving reproduction is called GPR, both aimed at boosting the search ability of MOEAs. Tested on 20 datasets, in terms of four performance metrics (including the computational time), the experimental section can be divided into three parts. First, five state-of-the-art MOEAs are used as baseline algorithms to integrate with PPI and GPR, while the integrated versions are then compared with their own baselines. Second, the PPI method is additionally compared with three representative feature selection initialization methods to further identify its advantages. Third, a complete PPI and GPR based MOEA (termed PGMOEA) is proposed to compare with three cutting-edge evolutionary feature selection algorithms to further position its search ability. In general, it is suggested from the empirical results that either PPI or GPR can significantly improve the overall performance of each integrated MOEA, while adopting both of them takes the most complementary effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder完成签到,获得积分0
1秒前
tianshanfeihe完成签到 ,获得积分10
3秒前
tomorrow完成签到 ,获得积分10
5秒前
SC完成签到 ,获得积分10
8秒前
寒冷寻桃完成签到 ,获得积分10
12秒前
16秒前
calphen完成签到 ,获得积分10
17秒前
mmz完成签到 ,获得积分10
18秒前
梁梁完成签到 ,获得积分10
33秒前
白嫖论文完成签到 ,获得积分10
35秒前
sun完成签到,获得积分10
42秒前
珍珠火龙果完成签到 ,获得积分10
43秒前
阔达磬完成签到,获得积分10
44秒前
professorY完成签到,获得积分10
45秒前
dajiejie完成签到 ,获得积分10
54秒前
55秒前
韧迹完成签到 ,获得积分10
59秒前
小龙完成签到,获得积分10
1分钟前
平常的毛豆应助科研通管家采纳,获得100
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
Haibrar完成签到 ,获得积分10
1分钟前
qianci2009完成签到,获得积分10
1分钟前
细胞呵呵完成签到 ,获得积分10
1分钟前
1分钟前
Raul完成签到 ,获得积分10
1分钟前
dddd完成签到 ,获得积分10
1分钟前
打打应助蔚蓝的天空采纳,获得10
1分钟前
1分钟前
herpes完成签到 ,获得积分0
2分钟前
2分钟前
tetrakis完成签到,获得积分10
2分钟前
碧蓝雁风完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Akim应助baobeikk采纳,获得10
2分钟前
2分钟前
耸耸完成签到 ,获得积分10
2分钟前
GB完成签到 ,获得积分10
2分钟前
飞翔的帅猪完成签到,获得积分10
2分钟前
roundtree完成签到 ,获得积分10
2分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
An Introduction to Sequential Dynamical Systems 200
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825038
求助须知:如何正确求助?哪些是违规求助? 3367362
关于积分的说明 10445316
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698245
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769911