Probe Population Based Initialization and Genetic Pool Based Reproduction for Evolutionary Bi-Objective Feature Selection

初始化 选择(遗传算法) 人工智能 人口 特征选择 进化计算 计算机科学 进化算法 遗传算法 繁殖 机器学习 模式识别(心理学) 生物 遗传学 社会学 人口学 程序设计语言
作者
Hang Xu,Bing Xue,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:6
标识
DOI:10.1109/tevc.2024.3403655
摘要

Feature selection can be treated as a bi-objective optimization problem, if aimed at minimizing both classification error and number of selected features, suitable for multi-objective evolutionary algorithms (MOEAs) to solve. However, traditional MOEAs would encounter setbacks when the number of features explodes to high dimensionality, causing difficulties for searching optimal solutions in large-scale decision space. In this paper, we propose two general methods applicable to integrate with existing MOEA frameworks in addressing bi-objective feature selection, especially for high-dimensional datasets. One based on probe populations for improving initialization is called PPI, and the other based on genetic pools for improving reproduction is called GPR, both aimed at boosting the search ability of MOEAs. Tested on 20 datasets, in terms of four performance metrics (including the computational time), the experimental section can be divided into three parts. First, five state-of-the-art MOEAs are used as baseline algorithms to integrate with PPI and GPR, while the integrated versions are then compared with their own baselines. Second, the PPI method is additionally compared with three representative feature selection initialization methods to further identify its advantages. Third, a complete PPI and GPR based MOEA (termed PGMOEA) is proposed to compare with three cutting-edge evolutionary feature selection algorithms to further position its search ability. In general, it is suggested from the empirical results that either PPI or GPR can significantly improve the overall performance of each integrated MOEA, while adopting both of them takes the most complementary effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿萨芣发布了新的文献求助10
1秒前
yexu发布了新的文献求助10
2秒前
Taro发布了新的文献求助10
2秒前
哆小咪发布了新的文献求助10
2秒前
3秒前
3秒前
cg完成签到 ,获得积分10
3秒前
4秒前
哈哈哈哈完成签到,获得积分10
4秒前
clazer应助tdtk采纳,获得10
5秒前
5秒前
顺带急完成签到 ,获得积分10
5秒前
打打应助乆乆乆乆采纳,获得10
5秒前
6秒前
思源应助水月中辉采纳,获得10
7秒前
传奇3应助RR采纳,获得10
7秒前
cx发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
DrJiang发布了新的文献求助10
8秒前
科研通AI5应助yexu采纳,获得10
9秒前
低空飞行发布了新的文献求助10
9秒前
10秒前
轩然发布了新的文献求助10
11秒前
yyyyy发布了新的文献求助10
11秒前
12秒前
海猫食堂完成签到,获得积分10
12秒前
12秒前
FXT完成签到 ,获得积分10
13秒前
Venti9完成签到,获得积分10
13秒前
单纯乞完成签到,获得积分10
16秒前
17秒前
汪雪峰发布了新的文献求助10
17秒前
隐形曼青应助淡定从凝采纳,获得10
18秒前
情怀应助Cartes采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
浮游应助橘子采纳,获得10
21秒前
Singularity应助秘密但东采纳,获得10
22秒前
CJPerformance发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849337
求助须知:如何正确求助?哪些是违规求助? 4148789
关于积分的说明 12850985
捐赠科研通 3896088
什么是DOI,文献DOI怎么找? 2141441
邀请新用户注册赠送积分活动 1161055
关于科研通互助平台的介绍 1061137