A Cooperative Vehicle-Road System for Anomaly Detection on Vehicle Tracks With Augmented Intelligence of Things

计算机科学 异常检测 车辆跟踪系统 智能交通系统 车辆信息通信系统 车辆动力学 计算机安全 道路交通 人工智能 汽车工程 运输工程 工程类 卡尔曼滤波器
作者
Yuxin Zhang,Limei Lin,Yanze Huang,Xiaoding Wang,Sun‐Yuan Hsieh,Thippa Reddy Gadekallu,Md. Jalil Piran
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (22): 35975-35988 被引量:2
标识
DOI:10.1109/jiot.2024.3398023
摘要

The Augmented Intelligence of Things (AIoT) is an emerging technology that combines augmented intelligence with the Internet of Things (IoT) to facilitate advanced decision-making processes. In this paper, we focus on the detection of vehicle trajectory anomalies in a vehicle-road collaboration system by AIoT, aiming to improve the traffic safety and road operation efficiency. We transmit collaboration data collected by sensors to an IoT server, which enables the effective data analysis for vehicle trajectory information. We propose a self-supervised learning augmented intelligence algorithm to achieve precise and efficient detection of trajectory anomalies. First, we models the traffic road network as a topology graph. Subsequently, we sample the relevant subgraph contexts for each target node through a random walk algorithm. And the subgraphs with higher intimacy scores are selected as the contextual background to be input along with the target node. After that, the anomaly score of each target node is computed through the generative learning module and the contrastive learning module. To evaluate the effectiveness of our anomaly detection approach, we initially conduct pre-training of the model using four widely utilized graph machine learning datasets. The experimental results reveal that our approach surpasses previous methods in the accuracy of identifying graph anomaly nodes. In addition, we carry out our approach on two real traffic datasets with high accuracies of 86.47% and 85.2%, respectively. This result demonstrates the effectiveness of our proposed approach in detecting trajectory anomalies in real traffic scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zrs发布了新的文献求助10
2秒前
AYF完成签到,获得积分10
4秒前
闪闪完成签到,获得积分10
5秒前
秋子发布了新的文献求助10
6秒前
7秒前
寒舟饮完成签到,获得积分10
8秒前
孔绍君完成签到 ,获得积分10
8秒前
飘逸的易梦完成签到,获得积分10
9秒前
完美世界应助刀锋采纳,获得10
12秒前
12秒前
研友_LjDyNZ完成签到,获得积分10
13秒前
芽芽豆完成签到 ,获得积分10
14秒前
jackiewang发布了新的文献求助10
14秒前
14秒前
14秒前
CipherSage应助单眼皮女生采纳,获得10
15秒前
追风少年i发布了新的文献求助10
17秒前
Owen发布了新的文献求助10
17秒前
冷妹君完成签到,获得积分10
17秒前
尺八发布了新的文献求助10
18秒前
英姑应助zrs采纳,获得10
18秒前
Joey完成签到,获得积分10
20秒前
20秒前
霍师傅发布了新的文献求助10
20秒前
刀锋给刀锋的求助进行了留言
21秒前
传奇3应助清脆的雁易采纳,获得10
24秒前
24秒前
不倦应助尺八采纳,获得10
24秒前
JL完成签到,获得积分10
24秒前
Milo完成签到,获得积分10
26秒前
假装学霸完成签到 ,获得积分10
26秒前
26秒前
乐乐应助万类霜天竞自由采纳,获得10
26秒前
jackiewang完成签到,获得积分10
28秒前
bubu完成签到,获得积分10
30秒前
刘静完成签到,获得积分10
31秒前
科研通AI5应助wuniuniu采纳,获得10
31秒前
大模型应助专注的大炮采纳,获得10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339