Deciphering the environmental chemical basis of muscle quality decline by interpretable machine learning models

肌萎缩 全国健康与营养检查调查 机器学习 随机森林 质量(理念) 人工智能 接收机工作特性 二元分类 计算机科学 骨骼肌 老年学 医学 环境卫生 内科学 人口 支持向量机 哲学 认识论
作者
Zhen Feng,Ying’ao Chen,Yuxin Guo,Jie Lyu
出处
期刊:The American Journal of Clinical Nutrition [Elsevier BV]
卷期号:120 (2): 407-418 被引量:2
标识
DOI:10.1016/j.ajcnut.2024.05.022
摘要

Sarcopenia is known as a decline in skeletal muscle quality and function that is associated with age. Sarcopenia is linked to diverse health problems, including endocrine-related diseases. Environmental chemicals (ECs), a broad class of chemicals released from industry, may influence muscle quality decline. In our work, we aim to simultaneously elucidate the associations between muscle quality decline and diverse EC exposures based on the data from the 2011–2012 and 2013–2014 survey cycles in the National Health and Nutrition Examination Survey (NHANES) project using machine learning models. Six machine learning models were trained based on the EC and non-EC exposures from NHANES to distinguish low from normal muscle quality index status. Different machine learning metrics were evaluated for these models. The SHAP (SHapley Additive exPlanations) approach was used to provide explainability for machine learning models. Random Forest (RF) performed best on the independent testing dataset. Based on the testing dataset, ECs can independently predict the binary muscle quality status with good performance by RF (Area Under the Receiver Operating Characteristic Curve (AUROC) = 0.793, Area Under the Precision-Recall Curve (AUPRC) = 0.808). The SHAP ranked the importance of ECs for the RF model. As a result, several metals and chemicals in urine, including 3-phenoxybenzoic acid and cobalt, were more associated with the muscle quality decline. Altogether, our analyses suggest that ECs can independently predict muscle quality decline with a good performance by RF, and the SHAP-identified ECs can be closely related to muscle quality decline and sarcopenia. Our analyses may provide valuable insights into environmental chemicals that may be the important basis of sarcopenia and endocrine-related diseases in U.S. populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助ZWL001采纳,获得10
刚刚
ERRIC123完成签到,获得积分10
刚刚
陶帅帅完成签到,获得积分10
1秒前
果实发布了新的文献求助10
1秒前
1秒前
陈陈陈完成签到 ,获得积分20
1秒前
sandy发布了新的文献求助10
2秒前
内向万天发布了新的文献求助10
2秒前
Skye应助欢喜的跳跳糖采纳,获得10
2秒前
七尺大儒完成签到,获得积分10
2秒前
2秒前
noah完成签到,获得积分10
3秒前
韦一发布了新的文献求助10
3秒前
兰格格完成签到,获得积分10
3秒前
summy发布了新的文献求助30
4秒前
4秒前
包容元芹发布了新的文献求助30
5秒前
小艾完成签到,获得积分10
5秒前
研都不研了完成签到 ,获得积分10
5秒前
5秒前
Matthew_G完成签到 ,获得积分10
6秒前
呆萌鱼发布了新的文献求助10
6秒前
CTKSYM完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
kdkddk完成签到,获得积分10
9秒前
战神小新发布了新的文献求助10
9秒前
9秒前
CTKSYM发布了新的文献求助10
9秒前
10秒前
CipherSage应助参上采纳,获得10
10秒前
桃子e发布了新的文献求助10
11秒前
728完成签到,获得积分10
11秒前
包容元芹完成签到,获得积分10
12秒前
Ava应助单耳元采纳,获得10
12秒前
Feng完成签到,获得积分10
13秒前
传奇3应助郎治宇采纳,获得10
13秒前
13秒前
mmddlj完成签到 ,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914349
求助须知:如何正确求助?哪些是违规求助? 3459850
关于积分的说明 10907657
捐赠科研通 3186209
什么是DOI,文献DOI怎么找? 1761393
邀请新用户注册赠送积分活动 851992
科研通“疑难数据库(出版商)”最低求助积分说明 793140