亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based quantification of osteonecrosis using magnetic resonance images in Gaucher disease

磁共振成像 医学 骨髓 放射科 股骨 核医学 病理 外科
作者
Boliang Yu,Tristan Whitmarsh,Philipp Riede,Scott D. McDonald,Joshua Kaggie,Timothy M. Cox,Kenneth Poole,Patrick Deegan
出处
期刊:Bone [Elsevier BV]
卷期号:186: 117142-117142
标识
DOI:10.1016/j.bone.2024.117142
摘要

Gaucher disease is one of the most common lysosomal storage disorders. Osteonecrosis is a principal clinical manifestation of Gaucher disease and often leads to joint collapse and fractures. T1-weighted (T1w) modality in MRI is widely used to monitor bone involvement in Gaucher disease and to diagnose osteonecrosis. However, objective and quantitative methods for characterizing osteonecrosis are still limited. In this work, we present a deep learning-based quantification approach for the segmentation of osteonecrosis and the extraction of characteristic parameters. We first constructed two independent U-net models to segment the osteonecrosis and bone marrow unaffected by osteonecrosis (UBM) in spine and femur respectively, based on T1w images from patients in the UK national Gaucherite study database. We manually delineated parcellation maps including osteonecrosis and UBM from 364 T1w images (176 for spine, 188 for femur) as the training datasets, and the trained models were subsequently applied to all the 917 T1w images in the database. To quantify the segmentation, we calculated morphological parameters including the volume of osteonecrosis, the volume of UBM, and the fraction of total marrow occupied by osteonecrosis. Then, we examined the correlation between calculated features and the bone marrow burden score for marrow infiltration of the corresponding image, and no strong correlation was found. In addition, we analyzed the influence of splenectomy and the interval between the age at first symptom and the age of onset of treatment on the quantitative measurements of osteonecrosis. The results are consistent with previous studies, showing that prior splenectomy is closely associated with the fractional volume of osteonecrosis, and there is a positive relationship between the duration of untreated disease and the quantifications of osteonecrosis. We propose this technique as an efficient and reliable tool for assessing the extent of osteonecrosis in MR images of patients and improving prediction of clinically important adverse events.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助靓丽的魔镜采纳,获得10
32秒前
38秒前
42秒前
woxinyouyou完成签到,获得积分0
1分钟前
酷酷的数据线完成签到,获得积分10
1分钟前
研友_VZG7GZ应助喵喵采纳,获得10
2分钟前
2分钟前
喵喵发布了新的文献求助10
2分钟前
慕青应助科研通管家采纳,获得10
3分钟前
丘比特应助尊敬的小凡采纳,获得20
3分钟前
3分钟前
量子星尘发布了新的文献求助30
3分钟前
朱明完成签到 ,获得积分10
3分钟前
4分钟前
从来都不会放弃zr完成签到,获得积分10
4分钟前
4分钟前
今后应助喵喵采纳,获得10
4分钟前
4分钟前
喵喵发布了新的文献求助10
4分钟前
5分钟前
Ji发布了新的文献求助10
5分钟前
Ji完成签到,获得积分10
5分钟前
5分钟前
5分钟前
失眠思远发布了新的文献求助10
5分钟前
CodeCraft应助儒雅老太采纳,获得10
5分钟前
华仔应助甜甜亦丝采纳,获得10
6分钟前
6分钟前
今后应助曼曼采纳,获得10
6分钟前
甜甜亦丝发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
曼曼发布了新的文献求助10
6分钟前
曼曼完成签到,获得积分10
6分钟前
FWCY发布了新的文献求助10
7分钟前
赘婿应助小婷君采纳,获得10
7分钟前
7分钟前
小婷君完成签到,获得积分10
7分钟前
小婷君发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078652
求助须知:如何正确求助?哪些是违规求助? 4297314
关于积分的说明 13388043
捐赠科研通 4120113
什么是DOI,文献DOI怎么找? 2256437
邀请新用户注册赠送积分活动 1260704
关于科研通互助平台的介绍 1194475