已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Privacy-preserving blockchain-based federated learning for brain tumor segmentation

计算机科学 遮罩(插图) 数据共享 块链 人工智能 异步通信 信息隐私 医疗保健 分割 质量(理念) 机器学习 计算机安全 计算机网络 医学 病理 视觉艺术 艺术 哲学 经济 替代医学 认识论 经济增长
作者
Rajesh Kumar,Cobbinah M. Bernard,Aman Ullah,Riaz Ullah Khan,Jay Kumar,Delanyo Kwame Bensah Kulevome,Yunbo Rao,Shaoning Zeng
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:177: 108646-108646 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108646
摘要

Improved data sharing between healthcare providers can lead to a higher probability of accurate diagnosis, more effective treatments, and enhanced capabilities of healthcare organizations. One critical area of focus is brain tumor segmentation, a complex task due to the heterogeneous appearance, irregular shape, and variable location of tumors. Accurate segmentation is essential for proper diagnosis and effective treatment planning, yet current techniques often fall short due to these complexities. However, the sensitive nature of health data often prohibits its sharing. Moreover, the healthcare industry faces significant issues, including preserving the privacy of the model and instilling trust in the model. This paper proposes a framework to address these privacy and trust issues by introducing a mechanism for training the global model using federated learning and sharing the encrypted learned parameters via a permissioned blockchain. The blockchain-federated learning algorithm we designed aggregates gradients in the permissioned blockchain to decentralize the global model, while the introduced masking approach retains the privacy of the model parameters. Unlike traditional raw data sharing, this approach enables hospitals or medical research centers to contribute to a globally learned model, thereby enhancing the performance of the central model for all participating medical entities. As a result, the global model can learn about several specific diseases and benefit each contributor with new disease diagnosis tasks, leading to improved treatment options. The proposed algorithm ensures the quality of model data when aggregating the local model, using an asynchronous federated learning procedure to evaluate the shared model's quality. The experimental results demonstrate the efficacy of the proposed scheme for the critical and challenging task of brain tumor segmentation. Specifically, our method achieved a 1.99% improvement in Dice similarity coefficient for enhancing tumors and a 19.08% reduction in Hausdorff distance for whole tumors compared to the baseline methods, highlighting the significant advancement in segmentation performance and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李昕123发布了新的文献求助10
1秒前
mervynzcy发布了新的文献求助10
1秒前
lhtyzcg发布了新的文献求助10
3秒前
4秒前
万能图书馆应助圆子采纳,获得10
7秒前
小蘑菇应助ZJQ采纳,获得10
7秒前
8秒前
chen发布了新的文献求助10
8秒前
10秒前
缥缈纲发布了新的文献求助30
15秒前
小棠完成签到 ,获得积分10
15秒前
hihi完成签到,获得积分20
16秒前
19秒前
大气的无颜关注了科研通微信公众号
20秒前
ZJQ发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
26秒前
赘婿应助liangmh采纳,获得10
27秒前
27秒前
Nirvan发布了新的文献求助10
29秒前
zzzz完成签到 ,获得积分10
29秒前
caia发布了新的文献求助10
29秒前
科目三应助zhouleiwang采纳,获得10
33秒前
35秒前
Orange应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
英俊的铭应助樊珩采纳,获得10
36秒前
36秒前
caia完成签到,获得积分10
36秒前
xuaotian发布了新的文献求助10
39秒前
39秒前
脑洞疼应助zhouleiwang采纳,获得10
39秒前
领导范儿应助abcdefg采纳,获得10
42秒前
45秒前
45秒前
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324642
关于积分的说明 10219085
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440