清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of bridge influence line and multiple-vehicle loads based on physics-informed neural networks

桥(图论) 鉴定(生物学) 直线(几何图形) 人工神经网络 工程类 计算机科学 人工智能 生物 数学 生态学 几何学 解剖
作者
Xingtian Li,Jinsong Zhu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:3
标识
DOI:10.1177/14759217241248570
摘要

Influence lines (ILs) and vehicle loads identification are critical in the design, health monitoring, and damage detection of bridges. Traditionally, the approach used in most existing literature has been to solve the system of equations directly. However, these approaches require complex calculations such as matrix decomposition and regularization coefficient optimization, making them difficult to implement. In addition, there are difficulties in obtaining accurate axle information and effectively separating the bridge response due to each vehicle. Thus, the improvement of identification algorithms for ILs and multi-vehicle loads remains of significant importance. To address these issues, this paper presents a novel approach that integrates prior physical equations and neural networks. This is achieved by integrating the equation that reflects the relationship between axle loads and bridge response into the neural network, utilizing existing methods for acquiring axle information of vehicles. To validate the effectiveness of the proposed method, it was first applied to theoretical and simulation data. The study then investigated the impact of noise and dynamic effects on the accuracy of the results, as well as the range of the neural network layers and sampling intervals. Finally, the method was implemented for identifying multiple-vehicle loads. The findings of the study confirm the feasibility and numerical stability of the proposed approach. The proposed method eliminates the need for complex computational processes, including matrix decomposition, diagonalization, regularization coefficient optimization, and solution vector smoothing fitting. As a result, the implementation of the algorithm is significantly less challenging, and identification accuracy is improved. It is important to note, however, that the proposed method is relatively more time-consuming due to the iterative learning and training required by the neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮晓见完成签到 ,获得积分10
5秒前
WYK完成签到 ,获得积分10
16秒前
小乙猪完成签到 ,获得积分0
22秒前
zzhui完成签到,获得积分10
51秒前
研友_nxw2xL完成签到,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
long完成签到 ,获得积分10
1分钟前
chen完成签到,获得积分10
2分钟前
zz完成签到 ,获得积分10
2分钟前
Glitter完成签到 ,获得积分10
2分钟前
3分钟前
沈惠映完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
毕光发布了新的文献求助10
4分钟前
毕光完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
herococa应助科研通管家采纳,获得10
5分钟前
5分钟前
李健应助平安健康采纳,获得10
5分钟前
5分钟前
平安健康发布了新的文献求助10
6分钟前
平安健康完成签到,获得积分10
6分钟前
6分钟前
Krim完成签到 ,获得积分10
6分钟前
6分钟前
丽丽完成签到,获得积分10
6分钟前
7分钟前
HoHo完成签到 ,获得积分10
7分钟前
低空飞行发布了新的文献求助10
8分钟前
小强完成签到 ,获得积分10
8分钟前
naczx完成签到,获得积分0
8分钟前
研友_RLNzvL完成签到,获得积分10
8分钟前
Hello应助bin0920采纳,获得10
8分钟前
9分钟前
9分钟前
Ava应助科研通管家采纳,获得10
9分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3931102
求助须知:如何正确求助?哪些是违规求助? 3476039
关于积分的说明 10989018
捐赠科研通 3206321
什么是DOI,文献DOI怎么找? 1771932
邀请新用户注册赠送积分活动 859266
科研通“疑难数据库(出版商)”最低求助积分说明 797064