Evaluating Bias and Fairness in AI: An Analysis of YouTube’s Recommendation Algorithm and its Impact on Geopolitical Discourse

地缘政治学 计算机科学 算法 互联网隐私 政治学 法学 政治
作者
Mert Can Çakmak,Nitin Agarwal,Obianuju Okeke,Ugochukwu Onyepunuka,Billy Spann
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4421612/v1
摘要

Abstract Exposure to online information is often determined by recommendation algorithms that introduce unintended biases when information system platforms attempt to deliver content that is engaging and relevant to their users. Further investigation into the fairness of AI-powered recommendation systems is crucial to understanding technology’s effect on societal behavior. This study underscores the need for further investigations of algorithmic biases within these AI-powered information systems, particularly in the context of geopolitical discourse. Our investigations examine the behavior of YouTube’s recommendation algorithm regarding narratives from the Indo-Pacific region to identify potential biases and study the decision-making behavior of the algorithm. For our analysis, we collected recommended videos across five recommendation depths originating from seed videos related to our narratives. We used drift analysis to examine the evolution of various video characteristics such as emotion, sentiment, and content at each depth. Network analysis was also performed on each depth of recommended videos to determine the "highly-influential" videos responsible for driving the recommendations at each depth. Our analysis reveals narrative-dependent drifts from the original content and emotion present in our seed videos in YouTube’s recommendations. We also observe that highly influential videos at each depth act as attractors, directing content across recommendations where attractors in each depth can become topically unrelated to the original content. The contributions of this analysis add a layer of understanding to the "black-box" nature of the YouTube recommendation algorithm. This study also provides a quantifiable approach for assessing fairness in information systems that are capable of influencing vulnerable populations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小青蛙OA完成签到,获得积分10
1秒前
3秒前
judy发布了新的文献求助10
4秒前
笑笑丶不爱笑完成签到,获得积分10
4秒前
4秒前
香蕉觅云应助wangyuan采纳,获得10
5秒前
5秒前
阿里巴巴发布了新的文献求助10
6秒前
Sirius完成签到,获得积分10
6秒前
7秒前
dujinjun完成签到,获得积分10
9秒前
Luffa完成签到,获得积分10
10秒前
碧蓝的弱发布了新的文献求助10
11秒前
乔乔兔发布了新的文献求助30
12秒前
12秒前
13秒前
NiKkKoO发布了新的文献求助10
15秒前
小二发布了新的文献求助10
15秒前
15秒前
wangyuan发布了新的文献求助10
16秒前
呐呐呐呐呐呐完成签到,获得积分20
17秒前
ding应助阿里巴巴采纳,获得10
18秒前
阳光的定帮完成签到,获得积分10
18秒前
锣大炮完成签到,获得积分10
19秒前
深情安青应助江河采纳,获得10
19秒前
陈可欣发布了新的文献求助10
21秒前
tph完成签到,获得积分10
22秒前
24秒前
guyutang完成签到 ,获得积分20
25秒前
十丶年完成签到,获得积分10
26秒前
乖乖完成签到,获得积分10
26秒前
27秒前
乔乔兔完成签到,获得积分10
27秒前
28秒前
源源完成签到 ,获得积分10
28秒前
30秒前
linxw发布了新的文献求助10
30秒前
江河发布了新的文献求助10
32秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784073
求助须知:如何正确求助?哪些是违规求助? 3329170
关于积分的说明 10240562
捐赠科研通 3044703
什么是DOI,文献DOI怎么找? 1671219
邀请新用户注册赠送积分活动 800191
科研通“疑难数据库(出版商)”最低求助积分说明 759222