Decoding Potassium Homeostasis in Cancer Metastasis and Drug Resistance: Insights from a Highly Selective DNAzyme-Based Intracellular K+ Sensor

化学 脱氧核酶 细胞内 平衡 转移 癌症 抗药性 癌症转移 癌症研究 生物化学 生物物理学 纳米技术 细胞生物学 内科学 DNA 遗传学 有机化学 医学 材料科学 生物
作者
Zhenglin Yang,Xiangli Shao,Yuting Wu,Aritra Roy,Edwin García,A. P. Farrell,Subhashree Pradhan,Weijie Guo,Hin Hark Gan,Zeynep Korkmaz,Emily J. Adams,Yi Lu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.5c03781
摘要

Potassium ions (K+) within the tumor microenvironment, along with dysregulation of K+ channels, play critical roles in supporting cancer cell survival and preventing their elimination. Directly monitoring changes in K+ homeostasis within cancer cells is invaluable for understanding these processes. However, achieving high selectivity over other biological metal ions, a detection dynamic range that aligns with intracellular K+ levels, and broad accessibility to research laboratories remain technically challenging for current K+ imaging probes. In this study, we report the in vitro selection of the first K+-specific RNA-cleaving DNAzyme and the development of a K+-specific DNAzyme fluorescent sensor with exceptional selectivity, achieving over 1000-fold selectivity against Na+ and more than 100-fold selectivity over other major biologically relevant metal ions. This sensor has an apparent dissociation constant (105 mM) that is close to the intracellular level of K+, and it has a broad detection range from 21 to 200 mM K+. Using this tool, we reveal a progressive decline in intracellular K+ levels in breast cancer cells with more advanced progression states. Moreover, we demonstrate that elevated extracellular K+ levels interfere with the efficacy of anticancer compounds like ML133 and Amiodarone, suggesting an underappreciated role of microenvironmental K+ in chemoresistance. Notably, blocking the Kir2.1 channel activity restored treatment sensitivity, presenting a potential strategy to overcome chemoresistance in aggressive cancers. These findings underscore the role of K+ homeostasis in tumor progression and support further exploration of ion-channel-targeted cancer therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助轻松的茉莉采纳,获得10
刚刚
2秒前
柯续缘发布了新的文献求助10
2秒前
上好佳完成签到,获得积分10
2秒前
2秒前
2秒前
传奇3应助zhiyao2025采纳,获得10
2秒前
鱼儿会飞完成签到,获得积分10
3秒前
mlzmlz完成签到,获得积分0
3秒前
Ll_l完成签到,获得积分10
3秒前
Xiaoqiang发布了新的文献求助10
3秒前
杨羕发布了新的文献求助10
4秒前
狗俊关注了科研通微信公众号
4秒前
klkl完成签到,获得积分10
4秒前
张朝程完成签到,获得积分10
4秒前
4秒前
田小姐完成签到,获得积分10
5秒前
大河向东刘先生完成签到,获得积分10
5秒前
5秒前
5秒前
CipherSage应助糊涂的元珊采纳,获得30
5秒前
吁愚雨豫完成签到 ,获得积分10
6秒前
6秒前
Chen应助gg采纳,获得20
6秒前
6秒前
固高2000zc发布了新的文献求助10
6秒前
彭于晏应助高贵路灯采纳,获得10
6秒前
103921wjk完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
8秒前
完美世界应助M.采纳,获得10
9秒前
welcomeS发布了新的文献求助10
10秒前
墨薄凉完成签到,获得积分10
10秒前
10秒前
内向的青荷完成签到,获得积分10
10秒前
智海瑞发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011