Modification of Cathode Surface for Sulfide Electrolyte‐Based All‐Solid‐State Batteries Using Sulfurized LiNbO3 Coating

电解质 涂层 材料科学 阴极 硫化物 表面改性 化学工程 固态 纳米技术 电极 冶金 化学 工程物理 电气工程 工程类 物理化学
作者
Hwicheol Ko,Jesik Park,Joo Young Lee,Yong Joon Park
出处
期刊:Batteries & supercaps [Wiley]
标识
DOI:10.1002/batt.202500188
摘要

All‐solid‐state batteries (ASSBs) with sulfide electrolytes are promising for next‐generation battery systems owing to their superior safety and favorable electrochemical properties. However, interfacial instability between the oxide cathode and sulfide electrolyte induces undesirable side reactions, degrading cell performance. This study develops a sulfurized LiNbO3 coating to stabilize this interface. While conventional LiNbO3 coatings reduce interfacial side reactions, their limited compatibility with sulfide electrolytes, due to Li‐ion chemical potential differences, hinders ion transport. The sulfurized LiNbO3 coating improves compatibility, acting as a buffer that reduces the Li‐ion potential gradient and enhances interfacial conductivity. The coating effectively suppresses side reactions, lowering cathode degradation and interfacial resistance. A simple and cost‐effective sulfur treatment process is used, where sulfur sublimation at 300 °C forms a sulfurized outer layer on the coating. Electrochemical evaluations of the coating reveal significant capacity, rate capability, and cyclic performance improvements over conventional LiNbO3 coatings. These findings underscore sulfur treatment as an effective method for stabilizing interfaces and enabling smooth Li‐ion transport, highlighting the advantages of the sulfurized LiNbO3 coating method. Overall, sulfurized LiNbO3 coatings offer scalable solutions to interfacial challenges in sulfide‐based ASSBs, thereby promoting improved performance and commercialization of solid‐state battery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱翎完成签到,获得积分10
刚刚
烟花应助舒心的雪莲采纳,获得10
刚刚
2秒前
梁跃耀发布了新的文献求助10
2秒前
NexusExplorer应助那时年少采纳,获得10
3秒前
周ZHOU完成签到 ,获得积分20
3秒前
烟花应助小可采纳,获得10
3秒前
dlindl完成签到,获得积分10
4秒前
云飞扬完成签到,获得积分10
4秒前
不愿发布了新的文献求助10
4秒前
4秒前
Novice6354完成签到 ,获得积分10
5秒前
5秒前
橙子完成签到,获得积分10
6秒前
爱博发布了新的文献求助10
6秒前
jj发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
CZY完成签到,获得积分10
7秒前
蜜蜂完成签到,获得积分10
9秒前
爆杀小白鼠完成签到,获得积分10
10秒前
自由的白梦完成签到,获得积分10
10秒前
傲娇豪完成签到,获得积分20
10秒前
ding应助旗翼夜采纳,获得30
10秒前
L77发布了新的文献求助10
10秒前
yuanshl1985发布了新的文献求助10
11秒前
在水一方应助沐阳采纳,获得10
11秒前
柒月发布了新的文献求助10
11秒前
CipherSage应助wang采纳,获得10
12秒前
12秒前
12秒前
13秒前
五五乐完成签到,获得积分10
13秒前
14秒前
达文西发布了新的文献求助10
15秒前
科研通AI2S应助风往北吹采纳,获得10
15秒前
雪顶蛋糕发布了新的文献求助10
15秒前
15秒前
L77完成签到,获得积分0
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660714
求助须知:如何正确求助?哪些是违规求助? 4835349
关于积分的说明 15091772
捐赠科研通 4819287
什么是DOI,文献DOI怎么找? 2579203
邀请新用户注册赠送积分活动 1533686
关于科研通互助平台的介绍 1492503