Lactylation-related risk model for prognostication and therapeutic responsiveness in uterine corpus endometrial carcinoma

医学 肿瘤科 子宫内膜癌 风险模型 内科学 妇科 癌症 风险分析(工程)
作者
Yichun Yin,Min Luo
出处
期刊:Discover Oncology [Springer Nature]
卷期号:16 (1) 被引量:1
标识
DOI:10.1007/s12672-025-02524-0
摘要

Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecological cancer characterized by varied clinical outcomes and responses to treatment. Developing effective prognostic models is essential for guiding clinical decision-making. Recent research indicates that lactylation-a process impacting gene expression and immune responses-can affect tumor growth, metastasis, and immune evasion through histone modification. This study introduces a lactylation-related risk model aimed at predicting UCEC prognosis and providing insights into treatment efficacy. We analyzed transcriptomic data from The Cancer Genome Atlas (TCGA) for UCEC patients and identified two distinct lactylation-related patterns using consensus clustering. A risk model developed using Cox and Lasso regression has been studied for its ability to predict prognosis, immune cell infiltration, and treatment response. Additionally, we investigated the relationship between IGSF1 gene expression and clinical features. Gene Set Enrichment Analysis (GSEA) was performed to explore the function of the IGSF1 gene. Two distinct lactylation-related clusters were identified, along with 156 differentially expressed genes between these clusters that are associated with the prognosis of UCEC. A risk model was developed based on three genes: IGSF1, ZFHX4, and SCGB2A1. This model effectively predicts clinical characteristics of UCEC patients, including immune cell infiltration, genetic variations, drug sensitivity, and response to immunotherapy. Notably, IGSF1 is linked to poor prognosis and is associated with immune activity, tumorigenesis, and cancer metabolism. This study demonstrates that the lactylation-related risk model plays a crucial role in predicting prognosis and the efficacy of immunotherapy in UCEC, offering valuable insights for personalized treatment approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鲤鱼平安发布了新的文献求助10
1秒前
珍珍完成签到,获得积分10
6秒前
Ll完成签到 ,获得积分10
6秒前
7秒前
直率三颜发布了新的文献求助10
8秒前
9秒前
Gauss应助小凯采纳,获得30
9秒前
Gauss应助小凯采纳,获得30
9秒前
浮浮世世发布了新的文献求助30
9秒前
10秒前
Sxyyy发布了新的文献求助10
10秒前
YangYu发布了新的文献求助10
11秒前
欢喜愫发布了新的文献求助10
12秒前
12秒前
13秒前
慕容博发布了新的文献求助10
13秒前
zjkzh完成签到 ,获得积分10
15秒前
猪老板发布了新的文献求助10
17秒前
17秒前
18秒前
砍柴少年发布了新的文献求助10
19秒前
LLM发布了新的文献求助10
19秒前
LaTeXer应助felix采纳,获得10
20秒前
华仔应助felix采纳,获得10
20秒前
20秒前
彭于晏应助felix采纳,获得10
20秒前
欢喜愫完成签到,获得积分10
21秒前
21秒前
21秒前
21秒前
bkagyin应助王jj采纳,获得10
21秒前
Ava应助夏飞飞采纳,获得30
21秒前
123发布了新的文献求助10
22秒前
Sxyyy完成签到,获得积分20
22秒前
欢喜惜儿发布了新的文献求助10
22秒前
英俊芷发布了新的文献求助10
24秒前
Stellvia发布了新的文献求助10
24秒前
善学以致用应助Sene采纳,获得50
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4811615
求助须知:如何正确求助?哪些是违规求助? 4124636
关于积分的说明 12762603
捐赠科研通 3861276
什么是DOI,文献DOI怎么找? 2125370
邀请新用户注册赠送积分活动 1147004
关于科研通互助平台的介绍 1040597