已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnosis of Sarcopenia Using Convolutional Neural Network Models Based on Muscle Ultrasound Images: Prospective Multicenter Study

肌萎缩 卷积神经网络 接收机工作特性 稳健性(进化) 计算机科学 医学 人工智能 机器学习 内科学 生物化学 化学 基因
作者
Zi‐Tong Chen,Xiao‐Long Li,Feng-Shan Jin,Yilei Shi,Lei Zhang,Haohao Yin,Yuli Zhu,Xin-Yi Tang,Xi-yuan Lin,Bo Lü,Qun Wang,Liping Sun,Xiao Xiang Zhu,Li Qiu,Hui‐Xiong Xu,Le‐Hang Guo
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e70545-e70545
标识
DOI:10.2196/70545
摘要

Background Early detection is clinically crucial for the strategic handling of sarcopenia, yet the screening process, which includes assessments of muscle mass, strength, and function, remains complex and difficult to access. Objective This study aims to develop a convolutional neural network model based on ultrasound images to simplify the diagnostic process and promote its accessibility. Methods This study prospectively evaluated 357 participants (101 with sarcopenia and 256 without sarcopenia) for training, encompassing three types of data: muscle ultrasound images, clinical information, and laboratory information. Three monomodal models based on each data type were developed in the training cohort. The data type with the best diagnostic performance was selected to develop the bimodal and multimodal model by adding another one or two data types. Subsequently, the diagnostic performance of the above models was compared. The contribution ratios of different data types were further analyzed for the multimodal model. A sensitivity analysis was performed by excluding 86 cases with missing values and retaining 271 complete cases for robustness validation. By comprehensive comparison, we finally identified the optimal model (SARCO model) as the convenient solution. Moreover, the SARCO model underwent an external validation with 145 participants (68 with sarcopenia and 77 without sarcopenia) and a proof-of-concept validation with 82 participants (19 with sarcopenia and 63 without sarcopenia) from two other hospitals. Results The monomodal model based on ultrasound images achieved the highest area under the receiver operator characteristic curve (AUC) of 0.827 and F1-score of 0.738 among the three monomodal models. Sensitivity analysis on complete data further confirmed the superiority of the ultrasound images model (AUC: 0.851; F1-score: 0.698). The performance of the multimodal model demonstrated statistical differences compared to the best monomodal model (AUC: 0.845 vs 0.827; P=.02) as well as the two bimodal models based on ultrasound images+clinical information (AUC: 0.845 vs 0.826; P=.03) and ultrasound images+laboratory information (AUC: 0.845 vs 0.832, P=0.035). On the other hand, ultrasound images contributed the most evidence for diagnosing sarcopenia (0.787) and nonsarcopenia (0.823) in the multimodal models. Sensitivity analysis showed consistent performance trends, with ultrasound images remaining the dominant contributor (Shapley additive explanation values: 0.810 for sarcopenia and 0.795 for nonsarcopenia). After comprehensive clinical analysis, the monomodal model based on ultrasound images was identified as the SARCO model. Subsequently, the SARCO model achieved satisfactory prediction performance in the external validation and proof-of-concept validation, with AUCs of 0.801 and 0.757 and F1-scores of 0.727 and 0.666, respectively. Conclusions All three types of data contributed to sarcopenia diagnosis, while ultrasound images played a dominant role in model decision-making. The SARCO model based on ultrasound images is potentially the most convenient solution for diagnosing sarcopenia. Trial Registration Chinese Clinical Trial Registry ChiCTR2300073651; https://www.chictr.org.cn/showproj.html?proj=199199
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西卡比巴卜完成签到,获得积分10
1秒前
3秒前
传奇3应助yyy采纳,获得10
9秒前
lala发布了新的文献求助100
9秒前
10秒前
汉堡包应助故意的如冬采纳,获得30
10秒前
情怀应助稳重向南采纳,获得10
13秒前
13秒前
14秒前
蜀山发布了新的文献求助10
16秒前
17秒前
九日完成签到,获得积分10
17秒前
18秒前
bkagyin应助稳重向南采纳,获得10
20秒前
21秒前
芒果柠檬发布了新的文献求助10
21秒前
扶摇完成签到 ,获得积分10
22秒前
在水一方应助可耐的毛衣采纳,获得10
22秒前
23秒前
24秒前
受伤的安雁应助夙家阿离采纳,获得10
27秒前
Jean发布了新的文献求助10
27秒前
27秒前
29秒前
上官若男应助稳重向南采纳,获得10
29秒前
29秒前
31秒前
32秒前
bzlish发布了新的文献求助10
33秒前
欣欣儿发布了新的文献求助10
33秒前
受伤的安雁应助Jean采纳,获得10
34秒前
小吴发布了新的文献求助10
34秒前
35秒前
36秒前
36秒前
Megan发布了新的文献求助30
37秒前
22岁被当童锦程应助bzlish采纳,获得10
37秒前
bkagyin应助bzlish采纳,获得10
37秒前
nicolesong0614完成签到,获得积分10
37秒前
发文章发一区完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Homogenization of Differential Operators and Integral Functionals 500
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927567
求助须知:如何正确求助?哪些是违规求助? 3472291
关于积分的说明 10972116
捐赠科研通 3202136
什么是DOI,文献DOI怎么找? 1769198
邀请新用户注册赠送积分活动 857963
科研通“疑难数据库(出版商)”最低求助积分说明 796225