Comparison of artificial intelligence and logistic regression models for mortality prediction in acute respiratory distress syndrome: a systematic review and meta-analysis

医学 接收机工作特性 荟萃分析 逻辑回归 急性呼吸窘迫综合征 急性呼吸窘迫 二元分析 内科学 机器学习 计算机科学
作者
Yang He,Ning Liu,Jie Yang,Yucai Hong,Hongying Ni,Zhongheng Zhang
出处
期刊:Intensive Care Medicine Experimental [Springer Nature]
卷期号:13 (1) 被引量:1
标识
DOI:10.1186/s40635-024-00706-8
摘要

Abstract Background The application of artificial intelligence (AI) in predicting the mortality of acute respiratory distress syndrome (ARDS) has garnered significant attention. However, there is still a lack of evidence-based support for its specific diagnostic performance. Thus, this systematic review and meta-analysis was conducted to evaluate the effectiveness of AI algorithms in predicting ARDS mortality. Method We conducted a comprehensive electronic search across Web of Science, Embase, PubMed, Scopus , and EBSCO databases up to April 28, 2024. The QUADAS-2 tool was used to assess the risk of bias in the included articles. A bivariate mixed-effects model was applied for the meta-analysis. Sensitivity analysis, meta-regression analysis, and tests for heterogeneity were also performed. Results Eight studies were included in the analysis. The sensitivity, specificity, and summarized receiver operating characteristic (SROC) of the AI-based model in the validation set were 0.89 (95% CI 0.79–0.95), 0.72 (95% CI 0.65–0.78), and 0.84 (95% CI 0.80–0.87), respectively. For the logistic regression (LR) model, the sensitivity, specificity, and SROC were 0.78 (95% CI 0.74–0.82), 0.68 (95% CI 0.60–0.76), and 0.81 (95% CI 0.77–0.84). The AI model demonstrated superior predictive accuracy compared to the LR model. Notably, the predictive model performed better in patients with moderate to severe ARDS (SAUC: 0.84 [95% CI 0.80–0.87] vs. 0.81 [95% CI 0.77–0.84]). Conclusion The AI algorithms showed superior performance in predicting the mortality of ARDS patients and demonstrated strong potential for clinical application. Additionally, we found that for ARDS, a highly heterogeneous condition, the accuracy of the model is influenced by the severity of the disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助义气百合采纳,获得10
刚刚
刚刚
刚刚
禾苗完成签到 ,获得积分10
1秒前
2秒前
3秒前
Ava应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得30
4秒前
4秒前
linzw发布了新的文献求助10
4秒前
andrele发布了新的文献求助10
5秒前
CR7应助YanBlazeX采纳,获得20
5秒前
卢大师发布了新的文献求助30
7秒前
7秒前
zoe完成签到,获得积分10
7秒前
Zzzz呀完成签到,获得积分10
7秒前
8秒前
9秒前
小鲤鱼在睡觉完成签到,获得积分20
10秒前
10秒前
斯文败类应助Diane采纳,获得10
11秒前
mao应助Alina采纳,获得50
11秒前
12秒前
13秒前
星辰大海应助笙箫采纳,获得10
13秒前
英俊的铭应助笙箫采纳,获得10
13秒前
14秒前
多多发布了新的文献求助10
14秒前
朱成豪发布了新的文献求助10
14秒前
鸡鱼蚝发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助150
18秒前
义气百合发布了新的文献求助10
18秒前
英姑应助朱成豪采纳,获得10
18秒前
1717发布了新的文献求助20
19秒前
Zhongyi完成签到,获得积分20
20秒前
能干的雪冥完成签到,获得积分10
21秒前
多多完成签到,获得积分10
23秒前
勤奋静曼发布了新的文献求助10
24秒前
流水巷发布了新的文献求助10
25秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888460
求助须知:如何正确求助?哪些是违规求助? 3430788
关于积分的说明 10771517
捐赠科研通 3155878
什么是DOI,文献DOI怎么找? 1742727
邀请新用户注册赠送积分活动 841301
科研通“疑难数据库(出版商)”最低求助积分说明 785885