Triple-positive breast cancer (TPBC), a unique subtype of luminal breast cancer, is characterized by concurrent positivity for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Owing to the crosstalk between the ER and HER2 signaling pathways, the standard of care and drug resistance of this particular subtype are difficult challenges. Recent research and clinical trials have indicated a shift in the treatment paradigm for TPBC from single-target therapies to multi-pathway, multitarget strategies aiming to comprehensively modulate intricate signaling networks, thereby overcoming resistance and enhancing therapeutic outcomes. Among multiple strategies, triple-drug therapy has emerged as a promising treatment modality, demonstrating potential efficacy in patients with TPBC. Moving forward, there is a critical need to perform in-depth analyses of specific mechanisms of cancer pathogenesis and metastasis, decipher the complex interactions between different genes or proteins, and identify concrete molecular targets, thus paving the way for the development of tailored therapeutic strategies to combat TPBC effectively.