亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structural Design and Active‐Site Modulation of Bifunctional Electrocatalysts and Electrolyte Chemistry for Zinc–Air Batteries

双功能 电解质 材料科学 纳米技术 电极 无机化学 催化作用 冶金 化学 有机化学 物理化学
作者
Jianying Liang,Youqi Zhu,Hao Yang,Han Zhao,Di Jin,Bingzhi Guo,Hongbo Liu,Wenxin Zhang,Shubo Tian,Chuanbao Cao,Meishuai Zou
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:35 (49) 被引量:3
标识
DOI:10.1002/adfm.202510535
摘要

Abstract Rechargeable zinc–air batteries (ZABs) have demonstrated considerable potential for commercial application due to their exceptional theoretical energy density, cost‐effectiveness, environmental compatibility, and safe reliability. However, their large‐scale application is restricted by sluggish kinetics in oxygen evolution (OER) and oxygen reduction (ORR) reactions as well as zinc dendrite formation. Therefore, the exploitation of high‐performance electrocatalyst and electrolyte represents a fundamental objective to facilitate reaction kinetics, cycling stability, and charge transfer efficiency. Bifunctional catalysts including precious metal nanoparticles, carbon composites, high‐entropy alloys, transition metal compounds, and single‐atom catalysts can exhibit tailored electronic structures and bifunctional reactivity for both ORR/OER processes. The rational design of these catalysts can provide new avenues for optimizing their fine structure and enhancing catalytic activity. The well‐known design principles for electrocatalytic materials such as d ‐band center theory, spin‐state optimization, orbital hybridization, and magnetic field‐assisted charge redistribution can provide effective guidelines to optimize adsorption energetics and accelerate reaction dynamics. Herein, this review summarizes the state‐of‐the‐art electrocatalyst design strategies, and elucidates the structure‐activity relationships from theoretical and experimental insights. Optimization schemes for efficient electrolytes are explored, aiming to offer valuable guidance and profound understanding for developing highly efficient Zn–air batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
江经纬发布了新的文献求助20
7秒前
9秒前
李健的小迷弟应助George采纳,获得10
25秒前
BowieHuang应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
所所应助科研通管家采纳,获得10
33秒前
38秒前
四季刻歌发布了新的文献求助10
52秒前
54秒前
1分钟前
George发布了新的文献求助10
1分钟前
JamesPei应助郭楠楠采纳,获得10
1分钟前
艾路完成签到,获得积分10
1分钟前
研友_ngqgY8完成签到,获得积分10
1分钟前
JamesPei应助温暖的乐蓉采纳,获得10
1分钟前
1分钟前
郭楠楠发布了新的文献求助10
1分钟前
1分钟前
比格大王应助badyoungboy采纳,获得10
1分钟前
江经纬完成签到,获得积分20
1分钟前
顾矜应助郭楠楠采纳,获得10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
隐形不凡完成签到,获得积分10
2分钟前
温暖的乐蓉关注了科研通微信公众号
2分钟前
李桂芳完成签到,获得积分10
2分钟前
3分钟前
急诊守夜人完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664330
求助须知:如何正确求助?哪些是违规求助? 4860894
关于积分的说明 15107549
捐赠科研通 4822849
什么是DOI,文献DOI怎么找? 2581773
邀请新用户注册赠送积分活动 1535993
关于科研通互助平台的介绍 1494287