聚类分析
断层(地质)
计算机科学
可靠性工程
数据挖掘
功率(物理)
图表
工程类
人工智能
地质学
数据库
物理
量子力学
地震学
作者
Xingyu Liu,Xin Meng,Ze Hu,Hancong Duan,Min Wang,Yaping Chen
出处
期刊:Sensors
[Multidisciplinary Digital Publishing Institute]
日期:2025-03-08
卷期号:25 (6): 1688-1688
摘要
In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance costs, making it difficult to meet the demands of modern extraction. To overcome these shortcomings, this paper proposes a novel fault detection method based on the analysis of motor power parameters. Through the dynamic mathematical modeling of the pumping unit system, we transform the indicator diagram of beam-pumping units into electric power diagrams and conduct an in-depth analysis of the characteristics of electric power diagrams under five typical operating conditions, revealing the impact of different working conditions on electric power. Compared to traditional methods, we introduce fourteen new features of the electrical parameters, encompassing multidimensional analyses in the time domain, frequency domain, and time-frequency domain, significantly enhancing the richness and accuracy of feature extraction. Additionally, we propose a new effectiveness evaluation method for the FCM clustering algorithm, integrating fuzzy membership degrees and the geometric structure of the dataset, overcoming the limitations of traditional clustering algorithms in terms of accuracy and the determination of the number of clusters. Through simulations and experiments on 10 UCI datasets, the proposed effectiveness function accurately evaluates the clustering results and determines the optimal number of clusters, significantly improving the performance of the clustering algorithm. Experimental results show that the fault diagnosis accuracy of our method reaches 98.4%, significantly outperforming traditional SVM and ELM methods. This high-precision diagnostic result validates the effectiveness of the method, enabling the efficient real-time monitoring of the working status of beam-pumping unit wells. In summary, the proposed method has significant advantages in real-time performance, diagnostic accuracy, and cost-effectiveness, solving the bottleneck problems of traditional methods and enhancing fault diagnosis capabilities in oilfield extraction processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI