A Fault Diagnosis Method for Oil Well Electrical Power Diagrams Based on Multidimensional Clustering Performance Evaluation

聚类分析 断层(地质) 计算机科学 可靠性工程 数据挖掘 功率(物理) 图表 工程类 人工智能 地质学 数据库 物理 量子力学 地震学
作者
Xingyu Liu,Xin Meng,Ze Hu,Hancong Duan,Min Wang,Yaping Chen
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (6): 1688-1688
标识
DOI:10.3390/s25061688
摘要

In oilfield extraction activities, traditional downhole condition monitoring is typically conducted using dynamometer cards to capture the dynamic changes in the load and displacement of the sucker rod. However, this method has severe limitations in terms of real-time performance and maintenance costs, making it difficult to meet the demands of modern extraction. To overcome these shortcomings, this paper proposes a novel fault detection method based on the analysis of motor power parameters. Through the dynamic mathematical modeling of the pumping unit system, we transform the indicator diagram of beam-pumping units into electric power diagrams and conduct an in-depth analysis of the characteristics of electric power diagrams under five typical operating conditions, revealing the impact of different working conditions on electric power. Compared to traditional methods, we introduce fourteen new features of the electrical parameters, encompassing multidimensional analyses in the time domain, frequency domain, and time-frequency domain, significantly enhancing the richness and accuracy of feature extraction. Additionally, we propose a new effectiveness evaluation method for the FCM clustering algorithm, integrating fuzzy membership degrees and the geometric structure of the dataset, overcoming the limitations of traditional clustering algorithms in terms of accuracy and the determination of the number of clusters. Through simulations and experiments on 10 UCI datasets, the proposed effectiveness function accurately evaluates the clustering results and determines the optimal number of clusters, significantly improving the performance of the clustering algorithm. Experimental results show that the fault diagnosis accuracy of our method reaches 98.4%, significantly outperforming traditional SVM and ELM methods. This high-precision diagnostic result validates the effectiveness of the method, enabling the efficient real-time monitoring of the working status of beam-pumping unit wells. In summary, the proposed method has significant advantages in real-time performance, diagnostic accuracy, and cost-effectiveness, solving the bottleneck problems of traditional methods and enhancing fault diagnosis capabilities in oilfield extraction processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
OE完成签到,获得积分10
1秒前
魔幻真发布了新的文献求助10
1秒前
1秒前
2秒前
李爱国应助炼丹采纳,获得10
3秒前
xiao发布了新的文献求助10
3秒前
谨慎的雍发布了新的文献求助10
4秒前
yx阿聪发布了新的文献求助10
4秒前
Jasper应助流光采纳,获得10
6秒前
7秒前
7秒前
wen完成签到,获得积分10
7秒前
7秒前
wang发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
失眠天亦应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786018
求助须知:如何正确求助?哪些是违规求助? 3331550
关于积分的说明 10251498
捐赠科研通 3046914
什么是DOI,文献DOI怎么找? 1672269
邀请新用户注册赠送积分活动 801207
科研通“疑难数据库(出版商)”最低求助积分说明 760020