Deciphering multi-dimensional interfacial mechanisms via organic cosolvent engineering for sustainable zinc metal batteries

金属 材料科学 纳米技术 化学 化学工程 冶金 工程类
作者
Xiaoyu Yu,Ming Chen,Junhao Wang,Shiqi Li,Haitang Zhang,Qingao Zhao,Haiyan Luo,Ya‐Ping Deng,Hanfeng Liang,Jiang Zhou,Fei Wang,Dongliang Chao,Yeguo Zou,Guang Feng,Yu Qiao,Shi‐Gang Sun
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1): 3820-3820 被引量:29
标识
DOI:10.1038/s41467-025-59069-7
摘要

Introducing organic cosolvent is a common and cost-effective electrolyte engineering for aqueous Zn-battery, reshaping the solvation environment of electrolyte and modulating the interfacial electrochemistry on Zn-metal electrode. Clarifying the mechanisms governing interfacial dynamic evolution and electrochemical performance is essential for guiding cosolvent selection. However, the absence of direct visualization for dynamic interfacial evolution during Zn plating/stripping has impeded mechanistic understanding of cosolvent-mediated effects in electrolyte engineering. Here, we combine advanced in-situ spectroscopy with theoretical calculation to decouple the interfacial evolution at the molecular level. We find that cosolvents not only weaken the connectivity of the interfacial hydrogen-bond network between water molecules, thereby hindering the H+ transfer, but also accelerate the interfacial dynamic transition of Zn2+-(de)solvation from transient to steady state. Additionally, we observe a dynamic adsorption substitution between cosolvent and water, which weakens the electric field intensity exerted on interfacial water. Furthermore, we demonstrate that cosolvents can modify the components content and distribution of the passivation-layer via indirect regulation pathway, rather than a typical self-decomposition mechanism. These multidimensional insights bridge the knowledge gap in cosolvent functionality, offering rational principles for tailoring solvation structures and interfacial dynamics in next-generation aqueous batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Www完成签到,获得积分10
2秒前
CipherSage应助个性绿柳采纳,获得30
2秒前
Arvin发布了新的文献求助10
2秒前
2秒前
CQ完成签到 ,获得积分10
2秒前
hhh完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
qing发布了新的文献求助30
6秒前
Jessica完成签到,获得积分10
6秒前
小鱼发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
Vincent完成签到,获得积分10
11秒前
hongxuezhi发布了新的文献求助10
13秒前
xiaozhao完成签到,获得积分10
13秒前
13秒前
Wangyiya发布了新的文献求助10
13秒前
14秒前
16秒前
chengshu666发布了新的文献求助10
16秒前
17秒前
乐乐应助qing采纳,获得30
18秒前
Rita应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
Rita应助科研通管家采纳,获得10
19秒前
19秒前
长度2到发布了新的文献求助10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
老实秋寒应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
老实秋寒应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777597
求助须知:如何正确求助?哪些是违规求助? 5634534
关于积分的说明 15446288
捐赠科研通 4909506
什么是DOI,文献DOI怎么找? 2641796
邀请新用户注册赠送积分活动 1589749
关于科研通互助平台的介绍 1544178