生物
共生
殖民地化
不规则嗜根菌
夜蛾科
真菌
粘虫
植物
幼虫
禾本科
接种
寄主(生物学)
生殖器鳞翅目
农学
园艺
丛枝菌根
夜蛾
生态学
细菌
基因
生物化学
遗传学
重组DNA
作者
Francisco Javier Zavala-Mazariegos,Samuel Cruz‐Esteban,José David Álvarez-Solís,Julio C. Rojas
摘要
Abstract Arbuscular mycorrhizal fungi are key components of the soil microbiota and are characterized by their symbiosis with terrestrial plants. In addition to providing nutrients to plants during symbiosis, arbuscular mycorrhizal fungi can enhance plant defenses against herbivorous insects and pathogens, including induced systemic resistance. Previous studies have demonstrated that Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) larvae perform better in maize plants colonized by arbuscular mycorrhizal fungi, which generally exhibit greater growth and higher nitrogen and phosphorus contents. However, these studies were limited to a small number of maize varieties. Additionally, prior research has not considered the host preference of S. frugiperda females for noncolonized versus arbuscular mycorrhizal fungi-colonized maize plants, although female choice can significantly influence progeny performance. In this study, we evaluated the effects of Rhizophagus irregularis (Blaszk, Wubet, Renker, & Buscot) C. Walker & A. Schüßler (Glomerales: Glomeraceae) inoculation on 4 maize inbred lines (CML 124, CML 343, CML 122, and CML 126) susceptible to S. frugiperda on female oviposition preference and larval performance of S. frugiperda. Overall, females preferred ovipositing on uncolonized seedlings to arbuscular mycorrhizal fungi-colonized seedlings, independent of the inbred lines. Larval performance was affected by inbred lines and arbuscular mycorrhizal fungi colonization. Larvae feeding on noncolonized maize seedlings exhibited significantly higher weights than those feeding on arbuscular mycorrhizal fungi-colonized seedlings. Among the inbred lines, larvae fed CML 122 performed better than those fed CML 126 and CML 343 seedlings. The weight of the larvae fed on CML 124 seedlings was similar to that of the larvae fed on CML 122, CML 126, and CML 343 seedlings.
科研通智能强力驱动
Strongly Powered by AbleSci AI