Design, Development, Integration and Field Evaluation of a Dual Robotic Arm Mango Harvesting Robot

对偶(语法数字) 机械臂 机器人 领域(数学) 计算机科学 工程类 控制工程 环境科学 人工智能 数学 艺术 文学类 纯数学
作者
Chenghai Yin,Jinyang Huang,Yuyang Xia,Hao Zheng,Wei Fu,Bin Zhang
出处
期刊:Journal of Field Robotics [Wiley]
标识
DOI:10.1002/rob.22580
摘要

ABSTRACT To solve the problems of high labor intensity and high cost when picking mango manually, a mango picking robot system with dual robotic arms was developed to realize automatic mango picking. Firstly, the YOLOMS network was used to realize the 3D localization of picking points for single mangoes and mango clusters in unstructured environments. Secondly, a new “shearing and grasping integrated” end‐effector for non‐destructive harvesting of mangoes was designed. Then, a task division method for the workspace of the dual robotic arm harvesting robot was proposed to minimize the likelihood of collisions between dual arms. Additionally, a depth‐first picking strategy was introduced to reduce fruit damage and enhance the success rates of picking mangoes from layered canopies. Finally, a mango harvesting robotic system with dual arms was developed and integrated. The performance of the system was evaluated by field mango picking experiments. The results showed that the average recognition rate and planning success rate of the harvesting robot were 83.94% and 98.45%, respectively. In addition, the average harvesting success rate of the robot was 73.92%, and the average single‐fruit harvesting time was 8.93 s. Compared with the robot with single arm, the harvesting time was reduced by 48.38%, which indicated that the harvesting efficiency of the dual robotic arm harvesting robot was significantly improved. The average collision‐free harvesting rate with the addition of the depth‐first harvesting strategy was 91.68%, which verified the rationality and effectiveness of the dual robotic arm collaborative mango harvesting robotic system. The results provide technical support for automated mango harvesting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Skuld完成签到,获得积分10
刚刚
1秒前
Skuld发布了新的文献求助10
4秒前
heisa完成签到,获得积分10
4秒前
7秒前
tzjz_zrz完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
13秒前
朱朱朱完成签到,获得积分10
13秒前
13秒前
14秒前
科研小菜完成签到 ,获得积分10
14秒前
16秒前
16秒前
19秒前
壮观梦易发布了新的文献求助10
20秒前
药大小金鱼完成签到,获得积分10
21秒前
浩浩浩发布了新的文献求助30
21秒前
大模型应助ppp采纳,获得10
22秒前
22秒前
24秒前
25秒前
希望天下0贩的0应助RXwang采纳,获得10
27秒前
李哈哈发布了新的文献求助10
27秒前
Atopos完成签到,获得积分10
27秒前
28秒前
FashionBoy应助莫华龙采纳,获得10
28秒前
kiki完成签到 ,获得积分10
30秒前
30秒前
31秒前
33秒前
量子星尘发布了新的文献求助10
34秒前
研友_VZG54L发布了新的文献求助10
34秒前
Revovler完成签到,获得积分10
38秒前
自信谷冬发布了新的文献求助10
38秒前
40秒前
壮观梦易发布了新的文献求助30
41秒前
GG发布了新的文献求助30
42秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863191
求助须知:如何正确求助?哪些是违规求助? 3405637
关于积分的说明 10645672
捐赠科研通 3129261
什么是DOI,文献DOI怎么找? 1725726
邀请新用户注册赠送积分活动 831181
科研通“疑难数据库(出版商)”最低求助积分说明 779664