Multi-Target Mechanism of Compound Qingdai Capsule for Treatment of Psoriasis: Multi-Omics Analysis and Experimental Verification

银屑病 机制(生物学) 计算生物学 组学 胶囊 生物信息学 医学 计算机科学 生物 皮肤病科 物理 植物 量子力学
作者
Yuanyuan Qiao,C Li,C -C Chen,Pei‐Lin Wu,Yibing Yang,Mingxiang Xie,Na Liu,Jiangyong Gu
出处
期刊:Drug Design Development and Therapy [Dove Medical Press]
卷期号:Volume 19: 5209-5230
标识
DOI:10.2147/dddt.s523836
摘要

Psoriasis is a chronic skin disease affected by genetic and autoimmunity. The traditional Chinese medicine, Compound Qingdai Capsule (CQC), has shown potential benefits in treating psoriasis in clinical settings. Despite its efficacy, the molecular mechanisms underpinning its therapeutic action remain unclear. This study aimed to unravel the molecular mechanism of Compound Qingdai Capsule for psoriasis based on the psoriasis pathogenic pathway network, integrating multi-omics analysis, systems pharmacology, machine learning modeling, and animal experimentation. Psoriasis pathogenic pathway network was constructed through employing bioinformatics analysis and psoriasis-related multi-omics data mining. The ingredients of CQC were detected by UPLC-MS/MS, and target prediction was performed by systems pharmacology. Machine learning, including Lasso regression, Random Forest, and Support Vector Machine (SVM), were utilized to screen core targets of psoriasis. Molecular docking was employed to evaluate the binding affinity between ingredients and core targets. The expression levels of core targets were determined using qRT-PCR and ELISA. Psoriasis-related datasets GSE201827 and GSE174763 were comprehensively analyzed to obtain 635 psoriasis-related genes. These genes were further enriched to elucidate signaling pathways involved, leading to the construction of psoriasis pathogenic pathway network. Utilizing UPLC-MS/MS, 29 main ingredients of CQC were characterized. CQC ingredients-targets network was constructed using these ingredients and their targets. Screening of CQC anti-psoriasis core targets using machine learning algorithm. Molecular docking confirmed good binding affinity between these targets and ingredients. Imiquimod (IMQ) induced psoriasis-like rat validated the anti-psoriasis effect of CQC by alleviating symptoms, reducing spleen and thymus index, and modulating the expressions of core targets at mRNA and protein levels. CQC effectively modulates the expression levels of AURKB, CCNB1, CCNB2, CCNE1, CDK1, and JAK3 through various ingredients, such as astilbin, salvianolic acid A, and engeletin, via multiple pathways, thereby alleviating psoriasis-like symptoms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周周完成签到 ,获得积分10
1秒前
承允完成签到,获得积分10
1秒前
ho完成签到,获得积分20
2秒前
2秒前
不过尔尔完成签到 ,获得积分10
4秒前
九湖夷上发布了新的文献求助10
6秒前
yulong发布了新的文献求助30
9秒前
10秒前
凡雁发布了新的文献求助10
11秒前
11秒前
12秒前
ghm完成签到,获得积分10
12秒前
九湖夷上完成签到,获得积分10
14秒前
无花果应助20240901采纳,获得10
16秒前
huan发布了新的文献求助10
16秒前
资乐菱完成签到,获得积分10
17秒前
王子完成签到,获得积分10
17秒前
CodeCraft应助即兴222采纳,获得10
18秒前
完美世界应助首负采纳,获得10
20秒前
24秒前
JOBZ完成签到,获得积分10
25秒前
糖歌吃瘦发布了新的文献求助10
28秒前
32秒前
无花果应助三明治采纳,获得10
32秒前
eeush完成签到,获得积分10
33秒前
35秒前
35秒前
雾里完成签到 ,获得积分10
35秒前
李健应助李金玉采纳,获得10
38秒前
NMR发布了新的文献求助10
38秒前
38秒前
大个应助yulong采纳,获得10
38秒前
承允发布了新的文献求助10
39秒前
京墨完成签到,获得积分20
40秒前
40秒前
炙热莫言完成签到,获得积分10
42秒前
42秒前
42秒前
隐形松发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Representations of the Orient in Western Music: Violence and Sensuality 300
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4798222
求助须知:如何正确求助?哪些是违规求助? 4117918
关于积分的说明 12739035
捐赠科研通 3848276
什么是DOI,文献DOI怎么找? 2120478
邀请新用户注册赠送积分活动 1142486
关于科研通互助平台的介绍 1032137