A fusion-based deep-learning algorithm predicts PDAC metastasis based on primary tumour CT images: a multinational study

医学 胰腺癌 接收机工作特性 转移 放射科 胰腺导管腺癌 腺癌 卷积神经网络 癌症 人工智能 内科学 肿瘤科 计算机科学
作者
Nannan Xue,Sergio Sabroso‐Lasa,Xavier Merino,Maria Munzo-Beltran,Megan Schuurmans,Marc Olano,Lidia Estudillo,María J. Ledesma‐Carbayo,Junqi Liu,Ruitai Fan,John J. Hermans,Casper W.F. van Eijck,Núria Malats
出处
期刊:Gut [BMJ]
卷期号:74 (12): 2024-2034
标识
DOI:10.1136/gutjnl-2024-334237
摘要

Background Diagnosing the presence of metastasis of pancreatic cancer is pivotal for patient management and treatment, with contrast-enhanced CT scans (CECT) as the cornerstone of diagnostic evaluation. However, this diagnostic modality requires a multifaceted approach. Objective To develop a convolutional neural network (CNN)-based model (PMPD, Pancreatic cancer Metastasis Prediction Deep-learning algorithm) to predict the presence of metastases based on CECT images of the primary tumour. Design CECT images in the portal venous phase of 335 patients with pancreatic ductal adenocarcinoma (PDAC) from the PanGenEU study and The First Affiliated Hospital of Zhengzhou University (ZZU) were randomly divided into training and internal validation sets by applying fivefold cross-validation. Two independent external validation datasets of 143 patients from the Radboud University Medical Center (RUMC), included in the PANCAIM study (RUMC-PANCAIM) and 183 patients from the PREOPANC trial of the Dutch Pancreatic Cancer Group (PREOPANC-DPCG) were used to evaluate the results. Results The area under the receiver operating characteristic curve (AUROC) for the internally tested model was 0.895 (0.853–0.937) and 0.779 (0.741–0.817) in the PanGenEU and ZZU sets, respectively. In the external validation sets, the mean AUROC was 0.806 (0.787–0.826) for the RUMC-PANCAIM and 0.761 (0.717–0.804) for the PREOPANC-DPCG. When stratified by the different metastasis sites, the PMPD model achieved the average AUROC between 0.901–0.927 in PanGenEU, 0.782–0.807 in ZZU and 0.761–0.820 in PREOPANC-DPCG sets. A PMPD-derived Metastasis Risk Score (MRS) (HR: 2.77, 95% CI 1.99 to 3.86, p=1.59e−09) outperformed the Resectability status from the National Comprehensive Cancer Network guideline and the CA19-9 biomarker in predicting overall survival. Meanwhile, the MRS could potentially predict developed metastasis (AUROC: 0.716 for within 3 months, 0.645 for within 6 months). Conclusion This study represents a pioneering utilisation of a high-performance deep-learning model to predict extrapancreatic organ metastasis in patients with PDAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fussguai完成签到,获得积分10
1秒前
Jasper应助机灵瑛采纳,获得10
1秒前
余正扬发布了新的文献求助10
1秒前
2秒前
10000SCI发布了新的文献求助10
5秒前
yy发布了新的文献求助10
5秒前
8秒前
8秒前
9秒前
隐形曼青应助坦率灵槐采纳,获得10
10秒前
mrpy应助LY采纳,获得200
10秒前
linxc07完成签到,获得积分10
10秒前
10秒前
共享精神应助10000SCI采纳,获得10
10秒前
hhh完成签到,获得积分20
11秒前
JamesPei应助淡如菊采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
kefan_123发布了新的文献求助80
16秒前
橘涂初九发布了新的文献求助10
16秒前
kaola发布了新的文献求助10
16秒前
16秒前
hhh发布了新的文献求助10
17秒前
Owen应助thchiang采纳,获得10
17秒前
19秒前
19秒前
打打应助甜蜜乐松采纳,获得10
19秒前
淡如菊完成签到,获得积分10
21秒前
小蘑菇应助黎乐荷采纳,获得10
21秒前
21秒前
Superan发布了新的文献求助10
21秒前
文静人达完成签到 ,获得积分10
22秒前
yy完成签到,获得积分20
22秒前
23秒前
24秒前
躞蹀发布了新的文献求助10
25秒前
外号胡一八完成签到 ,获得积分10
25秒前
余正扬完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5626128
求助须知:如何正确求助?哪些是违规求助? 4711920
关于积分的说明 14957446
捐赠科研通 4780625
什么是DOI,文献DOI怎么找? 2554153
邀请新用户注册赠送积分活动 1515941
关于科研通互助平台的介绍 1476179