Assessment of AI-Driven Software Accuracy in Diagnosing Oral Lesions Using Radiographic Imaging

射线照相术 医学 医学物理学 软件 放射科 计算机科学 程序设计语言
作者
V. P. Singh,Priyesh Mathur,راوي ترف حبيب عبدالله,Zeba Rao,Inderjit Murugendrappa Gowdar,Hemant Kumar Butolia,Dharamveer S. Chouhan
出处
期刊:Journal of Pharmacy and Bioallied Sciences [Medknow Publications]
卷期号:17 (Suppl 2): S1553-S1555 被引量:1
标识
DOI:10.4103/jpbs.jpbs_112_25
摘要

A BSTRACT Background: The application of artificial intelligence (AI) in dentistry has gained significant attention, particularly in diagnosing oral lesions using radiographic imaging. Materials and Methods: A total of 150 digital radiographic images of patients with suspected oral lesions were analyzed. The dataset was split into training (70%) and testing (30%) subsets for the AI model. The AI software was trained to identify and classify oral lesions into three categories: benign, malignant, and precancerous. The results were compared with diagnoses made by three experienced oral radiologists, which served as the reference standard. Diagnostic accuracy, sensitivity, specificity, and precision were calculated to evaluate the performance of the AI system. Results: The AI-driven software demonstrated an accuracy of 92.5%, with a sensitivity of 94% and specificity of 91% in diagnosing oral lesions. Precision values for benign, malignant, and precancerous lesions were 89%, 95%, and 93%, respectively. Interobserver agreement between the AI and human radiologists was found to be substantial (kappa = 0.84). The AI software showed faster diagnostic processing, with an average time of 3 seconds per image compared to 2 minutes by human experts. Conclusion: AI-driven software exhibits high accuracy and efficiency in diagnosing oral lesions using radiographic imaging, providing a valuable adjunct to traditional diagnostic methods. Its rapid processing capability and consistency in performance make it a promising tool for enhancing diagnostic workflows in dental practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浓雾发布了新的文献求助10
1秒前
zhangjian发布了新的文献求助20
2秒前
科研通AI2S应助ZPB采纳,获得10
2秒前
2秒前
桦奕兮完成签到 ,获得积分10
2秒前
jdilu关注了科研通微信公众号
3秒前
chemzhh完成签到,获得积分10
3秒前
游游游完成签到 ,获得积分10
4秒前
吱吱熊sama完成签到,获得积分10
4秒前
5秒前
一道完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
大模型应助飞翔的马采纳,获得10
6秒前
7秒前
7秒前
苏酥发布了新的文献求助10
7秒前
芥末章鱼发布了新的文献求助10
9秒前
无花果应助活力半蕾采纳,获得10
9秒前
9秒前
10秒前
10秒前
科研通AI6应助123采纳,获得10
11秒前
不吃豆皮发布了新的文献求助10
12秒前
领导范儿应助呼延坤采纳,获得10
12秒前
lizzie发布了新的文献求助10
12秒前
归尘发布了新的文献求助30
13秒前
xxxllllll完成签到,获得积分10
13秒前
你们才来发布了新的文献求助10
13秒前
天天快乐应助Jas采纳,获得30
13秒前
14秒前
14秒前
HUAIMI发布了新的文献求助10
14秒前
柏林寒冬完成签到,获得积分0
15秒前
16秒前
16秒前
16秒前
xxxllllll发布了新的文献求助30
16秒前
7788999完成签到,获得积分10
17秒前
jdilu发布了新的文献求助20
18秒前
xxxxhey发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613715
求助须知:如何正确求助?哪些是违规求助? 4698881
关于积分的说明 14899384
捐赠科研通 4737268
什么是DOI,文献DOI怎么找? 2547151
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473615