Evaluating the effectiveness of machine learning models for path loss prediction at 3.5 GHz with focus on feature prioritization

优先次序 光学(聚焦) 特征(语言学) 路径(计算) 人工智能 计算机科学 机器学习 路径损耗 数据挖掘 模式识别(心理学) 工程类 电信 管理科学 计算机网络 物理 语言学 哲学 光学 无线
作者
Farouq E. Shaibu,E. N. Onwuka,N. Salawu,Stephen S. Oyewobi
出处
期刊:Nigerian Journal of Technology [University of Nigeria]
卷期号:43 (4)
标识
DOI:10.4314/njt.v43i4.15
摘要

Accurate path loss prediction is vital for efficient resource allocation, interference reduction, and overall network reliability in 5G networks, particularly in the widely deployed mid-band frequency spectrum (such as 3.5 GHz). This study evaluates the effectiveness of machine learning models for path loss prediction at 3.5 GHz with a focus on feature prioritization. A feature selection method, recursive feature elimination, was used to identify significant features from datasets obtained through measurement campaigns, weather stations, 3-D ray tracing, geographical data, and simulations. Out of eighteen features, eleven, including new environmental features, were identified as significant features contributing to path loss. These selected variables were then utilized to optimize and train four common machine learning models (ANN, XGBoost, RF, and k-NN) to evaluate their performance in predicting path loss in a specific urban area called an irregular urban environment. The performance of these models was assessed by comparing their predictions with the measured path loss. The Random Forest model closely matched the measured path loss over the entire path length in both LoS and NLoS scenarios, achieving the lowest MAE of 0.15 dB and RMSE of 0.57 dB in the LoS scenario and 0.62 dB and 1.42 dB in the NLoS scenario, with R2 scores of 0.999995437 and 0.999996828, respectively. This indicates its superior performance in predicting path loss in the urban environment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chuqiao_sun发布了新的文献求助10
2秒前
南江悍匪完成签到,获得积分10
2秒前
小二郎应助露露采纳,获得10
3秒前
krzysku发布了新的文献求助10
3秒前
shun发布了新的文献求助10
4秒前
5秒前
6秒前
虚幻的绫完成签到,获得积分10
8秒前
9秒前
9秒前
湖里发布了新的文献求助10
9秒前
次一口多多完成签到,获得积分10
10秒前
烟花应助舒适乐安采纳,获得10
10秒前
10秒前
英俊的铭应助taku采纳,获得10
10秒前
33发布了新的文献求助10
11秒前
11秒前
耍酷的咖啡豆完成签到,获得积分10
13秒前
斯文败类应助柯燕婷采纳,获得10
13秒前
15秒前
krzysku完成签到,获得积分10
16秒前
herococa应助小米采纳,获得10
16秒前
17秒前
Jasper应助锌小子采纳,获得10
18秒前
qqq关闭了qqq文献求助
18秒前
Peng发布了新的文献求助10
18秒前
活泼的面包完成签到 ,获得积分10
19秒前
answer发布了新的文献求助10
20秒前
伍六七完成签到 ,获得积分10
20秒前
Persevere发布了新的文献求助10
22秒前
JMrider发布了新的文献求助10
22秒前
刘~完成签到,获得积分10
23秒前
大个应助棋士采纳,获得10
24秒前
Peng完成签到,获得积分10
24秒前
25秒前
酱紫发布了新的文献求助10
26秒前
31秒前
32秒前
追寻尔容关注了科研通微信公众号
33秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3948871
求助须知:如何正确求助?哪些是违规求助? 3494246
关于积分的说明 11071719
捐赠科研通 3224894
什么是DOI,文献DOI怎么找? 1782595
邀请新用户注册赠送积分活动 867174
科研通“疑难数据库(出版商)”最低求助积分说明 800623