A Dual-Task Synergy-Driven Generalization Framework for Pancreatic Cancer Segmentation in CT Scans

分割 计算机科学 人工智能 一般化 计算机视觉 对偶(语法数字) 胰腺癌 任务(项目管理) 医学影像学 图像分割 医学 癌症 数学 工程类 文学类 内科学 数学分析 艺术 系统工程
作者
Jun Li,Yijue Zhang,Haibo Shi,Minhong Li,Qiwei Li,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (9): 3783-3794
标识
DOI:10.1109/tmi.2025.3566376
摘要

Pancreatic cancer, characterized by its notable prevalence and mortality rates, demands accurate lesion delineation for effective diagnosis and therapeutic interventions. The generalizability of extant methods is frequently compromised due to the pronounced variability in imaging and the heterogeneous characteristics of pancreatic lesions, which may mimic normal tissues and exhibit significant inter-patient variability. Thus, we propose a generalization framework that synergizes pixel-level classification and regression tasks, to accurately delineate lesions and improve model stability. This framework not only seeks to align segmentation contours with actual lesions but also uses regression to elucidate spatial relationships between diseased and normal tissues, thereby improving tumor localization and morphological characterization. Enhanced by the reciprocal transformation of task outputs, our approach integrates additional regression supervision within the segmentation context, bolstering the model's generalization ability from a dual-task perspective. Besides, dual self-supervised learning in feature spaces and output spaces augments the model's representational capability and stability across different imaging views. Experiments on 594 samples composed of three datasets with significant imaging differences demonstrate that our generalized pancreas segmentation results comparable to mainstream in-domain validation performance (Dice: 84.07%). More importantly, it successfully improves the results of the highly challenging cross-lesion generalized pancreatic cancer segmentation task by 9.51%. Thus, our model constitutes a resilient and efficient foundational technological support for pancreatic disease management and wider medical applications. The codes will be released at https://github.com/SJTUBME-QianLab/Dual-Task-Seg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Derik发布了新的文献求助10
1秒前
1秒前
2秒前
田様应助LSM采纳,获得10
3秒前
张行完成签到,获得积分10
3秒前
3秒前
4秒前
鲤鱼舫发布了新的文献求助10
4秒前
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
林洁佳发布了新的文献求助10
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Frank应助科研通管家采纳,获得10
4秒前
qingmoheng应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得30
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
xxfsx应助科研通管家采纳,获得10
5秒前
Frank应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得30
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
Zx_1993应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得30
5秒前
YANYAN发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
qingmoheng应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
6秒前
carl发布了新的文献求助30
6秒前
Frank应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519788
求助须知:如何正确求助?哪些是违规求助? 4611783
关于积分的说明 14530363
捐赠科研通 4549191
什么是DOI,文献DOI怎么找? 2492885
邀请新用户注册赠送积分活动 1473959
关于科研通互助平台的介绍 1445766