A Dual-Task Synergy-Driven Generalization Framework for Pancreatic Cancer Segmentation in CT Scans

分割 概化理论 计算机科学 人工智能 背景(考古学) 一般化 胰腺癌 任务(项目管理) 医学影像学 图像分割 特征(语言学) 模式识别(心理学) 医学 癌症 数学 生物 统计 数学分析 内科学 古生物学 语言学 哲学 管理 经济
作者
Jun Li,Yijue Zhang,Haibo Shi,Minhong Li,Qiwei Li,Xiaohua Qian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (9): 3783-3794
标识
DOI:10.1109/tmi.2025.3566376
摘要

Pancreatic cancer, characterized by its notable prevalence and mortality rates, demands accurate lesion delineation for effective diagnosis and therapeutic interventions. The generalizability of extant methods is frequently compromised due to the pronounced variability in imaging and the heterogeneous characteristics of pancreatic lesions, which may mimic normal tissues and exhibit significant inter-patient variability. Thus, we propose a generalization framework that synergizes pixel-level classification and regression tasks, to accurately delineate lesions and improve model stability. This framework not only seeks to align segmentation contours with actual lesions but also uses regression to elucidate spatial relationships between diseased and normal tissues, thereby improving tumor localization and morphological characterization. Enhanced by the reciprocal transformation of task outputs, our approach integrates additional regression supervision within the segmentation context, bolstering the model's generalization ability from a dual-task perspective. Besides, dual self-supervised learning in feature spaces and output spaces augments the model's representational capability and stability across different imaging views. Experiments on 594 samples composed of three datasets with significant imaging differences demonstrate that our generalized pancreas segmentation results comparable to mainstream in-domain validation performance (Dice: 84.07%). More importantly, it successfully improves the results of the highly challenging cross-lesion generalized pancreatic cancer segmentation task by 9.51%. Thus, our model constitutes a resilient and efficient foundational technological support for pancreatic disease management and wider medical applications. The codes will be released at https://github.com/SJTUBME-QianLab/Dual-Task-Seg.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OuO发布了新的文献求助10
刚刚
sasa发布了新的文献求助10
刚刚
刚刚
墨墨发布了新的文献求助30
1秒前
1秒前
无花果应助Tao2023采纳,获得30
1秒前
2秒前
Orange应助zy采纳,获得10
3秒前
明理代荷完成签到,获得积分10
4秒前
5秒前
研友_Lw7OvL发布了新的文献求助10
5秒前
鸭梨散打发布了新的文献求助10
5秒前
丰富靖琪发布了新的文献求助10
6秒前
积极的静枫关注了科研通微信公众号
6秒前
kangkang发布了新的文献求助10
7秒前
8秒前
10秒前
10秒前
小巧富完成签到 ,获得积分10
10秒前
英吉利25发布了新的文献求助10
11秒前
梅梅完成签到 ,获得积分10
11秒前
浮游应助搞怪的世德采纳,获得10
13秒前
bluexinyu完成签到,获得积分10
13秒前
14秒前
14秒前
orixero应助sasa采纳,获得10
15秒前
Rabbit发布了新的文献求助20
15秒前
wkx发布了新的文献求助10
16秒前
hqz发布了新的文献求助10
17秒前
挖菜发布了新的文献求助10
18秒前
辞却发布了新的文献求助30
19秒前
浮游应助一二采纳,获得10
19秒前
蜡笔小鑫发布了新的文献求助30
20秒前
贾111发布了新的文献求助10
20秒前
白藤总是一坨肉完成签到 ,获得积分10
21秒前
5cdc完成签到,获得积分10
21秒前
21秒前
wxyshare应助失眠的安白采纳,获得10
22秒前
22秒前
爱听歌的从筠完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 800
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5029501
求助须知:如何正确求助?哪些是违规求助? 4264943
关于积分的说明 13296265
捐赠科研通 4073433
什么是DOI,文献DOI怎么找? 2227911
邀请新用户注册赠送积分活动 1236570
关于科研通互助平台的介绍 1160769