Arbitrary-scale Super-resolution via Deep Learning: A Comprehensive Survey

计算机科学 增采样 比例(比率) 人工智能 深度学习 分辨率(逻辑) 计算机视觉 机器学习 班级(哲学) 图像(数学) 量子力学 物理
作者
Hongying Liu,Zekun Li,Fanhua Shang,Yuanyuan Liu,Liang Wan,Wei Feng,Radu Timofte
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102015-102015 被引量:9
标识
DOI:10.1016/j.inffus.2023.102015
摘要

Super-resolution (SR) is an essential class of low-level vision tasks, which aims to improve the resolution of images or videos in computer vision. In recent years, significant progress has been made in image and video super-resolution techniques based on deep learning. Nevertheless, most of the methods only consider SR with a few integer scale factors, which limits the application of the SR techniques to real-world problems. Recently, the methods to achieve arbitrary-scale super-resolution via a single model have attracted much attention. However, there is no work to thoroughly analyze the arbitrary-scale methods based on deep learning. In this work, we present a comprehensive and systematic review of 45 existing deep learning-based methods for arbitrary-scale image and video SR. We first classify the existing SR methods according to the resolved scales. Furthermore, we propose an in-depth taxonomy for state-of-the-art methods based on the core problem of how to achieve arbitrary-scale super-resolution, i.e., how to perform arbitrary-scale upsampling. Based on our taxonomy, the performance of existing arbitrary-scale SR methods is compared, and their advantages and limitations are analyzed. We also provide some guidance for the selection of these methods in different real-world applications. Finally, we briefly discuss the future directions of arbitrary-scale super-resolution, which shows some inspirations for the progress of subsequent works on arbitrary-scale image and video super-resolution tasks. The paper repository of this work will be available at https://github.com/Weepingchestnut/Arbitrary-Scale-SR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zn315315发布了新的文献求助10
2秒前
miaomiao发布了新的文献求助10
2秒前
小慕斯发布了新的文献求助10
3秒前
英姑应助HH采纳,获得10
3秒前
jiayou完成签到,获得积分10
3秒前
景山槐完成签到,获得积分10
4秒前
Sene完成签到,获得积分10
5秒前
小慕斯完成签到,获得积分10
9秒前
miaomiao完成签到,获得积分10
11秒前
hyy完成签到,获得积分20
11秒前
激昂的秀发完成签到,获得积分10
14秒前
荔枝发布了新的文献求助50
16秒前
陈焕清完成签到,获得积分10
17秒前
南城完成签到 ,获得积分10
17秒前
liyu驳回了Nichols应助
18秒前
花開完成签到 ,获得积分10
18秒前
21秒前
22秒前
辛苦的医学上完成签到,获得积分20
23秒前
wqqq发布了新的文献求助10
25秒前
科研通AI5应助hky采纳,获得10
26秒前
荒诞DE谎言完成签到 ,获得积分10
28秒前
li发布了新的文献求助30
28秒前
29秒前
hhr完成签到 ,获得积分10
29秒前
小熊发布了新的文献求助10
29秒前
邓希静完成签到,获得积分10
32秒前
此时此刻完成签到 ,获得积分10
32秒前
Nietzc完成签到,获得积分10
32秒前
shuogesama完成签到,获得积分10
34秒前
35秒前
新一发布了新的文献求助10
36秒前
TheDing完成签到,获得积分10
36秒前
三千年的成长完成签到 ,获得积分10
36秒前
dfswf完成签到,获得积分10
37秒前
万能图书馆应助默listening采纳,获得10
38秒前
38秒前
Nietzc发布了新的文献求助10
38秒前
悠夏sunny完成签到,获得积分10
39秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726