A squeezed mechanical oscillator with millisecond quantum decoherence

量子退相干 物理 去相 量子力学 量子 量子位元 量子耗散
作者
Amir Youssefi,S. Kono,Mahdi Chegnizadeh,Tobias J. Kippenberg
出处
期刊:Nature Physics [Nature Portfolio]
卷期号:19 (11): 1697-1702 被引量:19
标识
DOI:10.1038/s41567-023-02135-y
摘要

An enduring challenge in constructing mechanical-oscillator-based hybrid quantum systems is to ensure engineered coupling to an auxiliary degree of freedom and maintain good mechanical isolation from the environment, that is, low quantum decoherence, consisting of thermal decoherence and dephasing. Here we overcome this challenge by introducing a superconducting-circuit-based optomechanical platform that exhibits low quantum decoherence and has a large optomechanical coupling, which allows us to prepare the quantum ground and squeezed states of motion with high fidelity. We directly measure a thermal decoherence rate of 20.5 Hz (corresponding to T1 = 7.7 ms) as well as a pure dephasing rate of 0.09 Hz, yielding a 100-fold improvement in the quantum state lifetime compared with prior optomechanical systems. This enables us to reach a motional ground-state occupation of 0.07 quanta (93% fidelity) and realize mechanical squeezing of –2.7 dB below the zero-point fluctuation. Furthermore, we observe the free evolution of the mechanical squeezed state, preserving its non-classical nature over millisecond timescales. Such ultralow quantum decoherence not only increases the fidelity of quantum control and measurement of macroscopic mechanical systems but may also benefit interfacing with qubits, and places the system in a parameter regime suitable for tests of quantum gravity. Achieving low decoherence is challenging in hybrid quantum systems. A superconducting-circuit-based optomechanical platform realizes millisecond-scale quantum state lifetime, which allows tracking of the free evolution of a squeezed mechanical state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
Blue应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
不配.应助WZW采纳,获得30
1秒前
郭志倩完成签到,获得积分10
3秒前
CodeCraft应助量子星尘采纳,获得10
3秒前
无暇完成签到,获得积分10
3秒前
香蕉觅云应助量子星尘采纳,获得10
3秒前
4秒前
研友_VZG7GZ应助路飞采纳,获得10
4秒前
6秒前
Jasper应助GEE采纳,获得10
8秒前
科研通AI6应助skr采纳,获得10
8秒前
桐桐应助量子星尘采纳,获得10
8秒前
8秒前
Zhangqg发布了新的文献求助10
9秒前
Jocd发布了新的文献求助10
9秒前
搜集达人应助量子星尘采纳,获得50
10秒前
隐形曼青应助量子星尘采纳,获得10
11秒前
11秒前
yangican发布了新的文献求助10
12秒前
Hongmin完成签到,获得积分10
13秒前
yamoon发布了新的文献求助10
14秒前
冷静愫完成签到,获得积分10
15秒前
布可完成签到,获得积分10
16秒前
在水一方应助小学猹采纳,获得10
16秒前
Akim应助量子星尘采纳,获得10
16秒前
852应助量子星尘采纳,获得10
17秒前
17秒前
wdw2501发布了新的文献求助10
18秒前
wanci应助量子星尘采纳,获得10
20秒前
hugo完成签到,获得积分10
20秒前
黄123huang_完成签到,获得积分10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260156
求助须知:如何正确求助?哪些是违规求助? 3793081
关于积分的说明 11896577
捐赠科研通 3440645
什么是DOI,文献DOI怎么找? 1888258
邀请新用户注册赠送积分活动 938982
科研通“疑难数据库(出版商)”最低求助积分说明 844362