Artificial intelligence techniques for enhancing supply chain resilience: A systematic literature review, holistic framework, and future research

供应链 知识管理 系统回顾 供应链管理 弹性(材料科学) 现存分类群 计算机科学 数据科学 管理科学 过程管理 业务 心理学 工程伦理学 工程类 政治学 营销 物理 梅德林 进化生物学 生物 法学 热力学
作者
Adane Shikur Kassa,Daniel Kitaw,Ulrich Stache,Birhanu Beshah,Getachew Degefu
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:186: 109714-109714 被引量:17
标识
DOI:10.1016/j.cie.2023.109714
摘要

Today’s supply chains (SC) have become vulnerable to unexpected and ever-intensifying disruptions from myriad sources. Consequently, the concept of supply chain resilience (SCRes) has become crucial to complement the conventional risk management paradigm, which has failed to cope with unexpected SC disruptions resulting in severe consequences affecting SC performances and making business continuity questionable. Advancements in cutting-edge technologies like artificial intelligence (AI) and their potential to enhance SCRes by improving critical antecedents across different phases have attracted the attention of scholars and practitioners. The research from academia and the practical interest of the industry have yielded significant publications at the nexus of AI and SCRes during the last two decades. However, the applications and examinations have been primarily conducted independently, and the extant literature is dispersed into research streams despite the complex nature of SCRes. To bridge this gap, this study undertakes a systematic literature review involving 106 peer-reviewed articles. Through curation, synthesis, and consolidation of up-to-date literature, the study presents a comprehensive overview of developments spanning from 2010 to 2022. Bayesian networks are the most topical ones among the 13 AI techniques evaluated. Concerning the critical antecedents, visibility is the first ranking to be realized by the techniques. The study revealed that AI techniques support only the first 3 phases of SCRes (readiness, response, and recovery), and readiness is the most popular one, while no evidence has been found for the growth phase. The study proposed an AI-SCRes framework to inform research and practice to holistically approach SCRes. It also provided implications for practice, policy, and theory as well as gaps for impactful future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yofaz完成签到,获得积分10
2秒前
2秒前
Ava应助碧蓝的寻云采纳,获得10
3秒前
3秒前
sundial发布了新的文献求助10
4秒前
高小h发布了新的文献求助10
4秒前
李小刚完成签到,获得积分10
4秒前
tayslay发布了新的文献求助10
7秒前
Meteor636完成签到 ,获得积分10
8秒前
8秒前
9秒前
菜热热完成签到,获得积分10
9秒前
DYDY完成签到 ,获得积分10
10秒前
李小刚发布了新的文献求助10
10秒前
yyyyyyypxxxx关注了科研通微信公众号
10秒前
11秒前
zhangsq应助胖Q采纳,获得10
12秒前
12秒前
鸡蛋叉烧肠完成签到 ,获得积分10
12秒前
YW发布了新的文献求助10
13秒前
lwh104完成签到,获得积分10
13秒前
马马发布了新的文献求助10
13秒前
深情安青应助tayslay采纳,获得10
14秒前
sqzr123完成签到,获得积分10
15秒前
SYLH应助顺心的皓轩采纳,获得10
16秒前
黎明完成签到,获得积分10
17秒前
彭佳乐发布了新的文献求助10
18秒前
19秒前
20秒前
MchemG应助科研通管家采纳,获得10
20秒前
Ai香香应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
Jasper应助彭佳乐采纳,获得10
22秒前
Akim应助马马采纳,获得10
22秒前
22秒前
bkagyin应助梅子酒采纳,获得10
23秒前
黎明发布了新的文献求助10
23秒前
科研牛马完成签到,获得积分10
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867305
求助须知:如何正确求助?哪些是违规求助? 3409602
关于积分的说明 10664362
捐赠科研通 3133875
什么是DOI,文献DOI怎么找? 1728505
邀请新用户注册赠送积分活动 833018
科研通“疑难数据库(出版商)”最低求助积分说明 780517