Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning

可解释性 计算机科学 人工智能 模式识别(心理学) 熵(时间箭头) 机器学习 交叉熵 对比度(视觉) 变量(数学) 特征提取 卷积神经网络 断层(地质) 数学 量子力学 物理 地质学 数学分析 地震学
作者
Yutong Dong,Hongkai Jiang,Renhe Yao,Mingzhe Mu,Qiao Yang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:243: 109805-109805 被引量:54
标识
DOI:10.1016/j.ress.2023.109805
摘要

Deep learning-based fault diagnosis methods have already attained remarkable achievements in this field. However, rolling bearing frequently operates under variable speed conditions, and the number of healthy samples collected is often significantly larger than that of failure samples. In this paper, a multiscale dynamic supervised contrast learning (MDSupCon) framework is proposed. First, a multiscale adaptive feature extraction network is designed as the backbone, which utilizes multiple convolutional kernels to enhance feature extraction capabilities under variable speed conditions, and the branch attention mechanism is incorporated to adaptively adjust the weights of various scale branches. Second, the joint channel-space attention mechanism is constructed to enhance the importance of critical features while reducing redundant information, thereby improving fault identification accuracy and interpretability. Third, the dynamic supervised contrast loss function is designed to assign dynamic compensation factors to samples of various categories according to the training results, which reduces the impact of easily classified samples and enhances the contribution of hard-to-classify samples in imbalanced scenarios. Additionally, a dynamic cross-entropy loss is designed to train the backbone and the classifiers. The MDSupCon has achieved superior results of 89.49% and 92.15% on two bearing datasets with an imbalance ratio of 20:1 and variable speeds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得30
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
小二郎应助科研通管家采纳,获得10
1秒前
001完成签到,获得积分10
1秒前
smottom应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
demonsnow应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
2秒前
ilihe应助科研通管家采纳,获得10
2秒前
MchemG应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
南乔发布了新的文献求助10
2秒前
AhhHuang应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
AhhHuang应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
XRT发布了新的文献求助10
5秒前
柠檬完成签到 ,获得积分10
6秒前
醉熏的荆完成签到,获得积分10
6秒前
……完成签到,获得积分10
6秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5678686
求助须知:如何正确求助?哪些是违规求助? 4983833
关于积分的说明 15165243
捐赠科研通 4838529
什么是DOI,文献DOI怎么找? 2592512
邀请新用户注册赠送积分活动 1545794
关于科研通互助平台的介绍 1503976