Noninvasive Detection of Salt Stress in Cotton Seedlings by Combining Multicolor Fluorescence–Multispectral Reflectance Imaging with EfficientNet-OB2

多光谱图像 苗木 盐(化学) 压力(语言学) 环境科学 主成分分析 反射率 化学 计算机科学 农学 人工智能 生物 光学 物理 语言学 哲学 物理化学
作者
Jiayi Li,Haiyan zeng,Chenxin Huang,Libin Wu,Jie Ma,Beibei Zhou,Dapeng Ye,Haiyong Weng
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:5 被引量:2
标识
DOI:10.34133/plantphenomics.0125
摘要

Salt stress is considered one of the primary threats to cotton production. Although cotton is found to have reasonable salt tolerance, it is sensitive to salt stress during the seedling stage. This research aimed to propose an effective method for rapidly detecting salt stress of cotton seedlings using multicolor fluorescence-multispectral reflectance imaging coupled with deep learning. A prototyping platform that can obtain multicolor fluorescence and multispectral reflectance images synchronously was developed to get different characteristics of each cotton seedling. The experiments revealed that salt stress harmed cotton seedlings with an increase in malondialdehyde and a decrease in chlorophyll content, superoxide dismutase, and catalase after 17 days of salt stress. The Relief algorithm and principal component analysis were introduced to reduce data dimension with the first 9 principal component images (PC1 to PC9) accounting for 95.2% of the original variations. An optimized EfficientNet-B2 (EfficientNet-OB2), purposely used for a fixed resource budget, was established to detect salt stress by optimizing a proportional number of convolution kernels assigned to the first convolution according to the corresponding contributions of PC1 to PC9 images. EfficientNet-OB2 achieved an accuracy of 84.80%, 91.18%, and 95.10% for 5, 10, and 17 days of salt stress, respectively, which outperformed EfficientNet-B2 and EfficientNet-OB4 with higher training speed and fewer parameters. The results demonstrate the potential of combining multicolor fluorescence-multispectral reflectance imaging with the deep learning model EfficientNet-OB2 for salt stress detection of cotton at the seedling stage, which can be further deployed in mobile platforms for high-throughput screening in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
明日之影完成签到,获得积分10
3秒前
星辰大海应助传统的如霜采纳,获得10
3秒前
0033完成签到,获得积分10
3秒前
CipherSage应助活力的惜萱采纳,获得10
5秒前
伶俐的以晴完成签到,获得积分10
5秒前
5秒前
5秒前
Aliya完成签到 ,获得积分10
6秒前
0033发布了新的文献求助10
6秒前
CodeCraft应助温柔樱桃采纳,获得100
6秒前
罗克完成签到,获得积分10
7秒前
7秒前
HEIKU应助北海西贝采纳,获得10
7秒前
半柚应助勤奋西牛采纳,获得10
7秒前
Jasper应助单纯尔蓝采纳,获得10
7秒前
Mingjun完成签到 ,获得积分10
7秒前
NexusExplorer应助WLM采纳,获得10
8秒前
魏曼柔完成签到,获得积分10
9秒前
9秒前
李健应助看看文献吧采纳,获得10
9秒前
FashionBoy应助小张小张采纳,获得10
10秒前
噜噜发布了新的文献求助10
11秒前
小赟完成签到,获得积分10
11秒前
故篱陌陌完成签到,获得积分20
12秒前
11发布了新的文献求助10
12秒前
13秒前
贾舒涵发布了新的文献求助10
13秒前
13秒前
勤奋的凌香完成签到,获得积分10
13秒前
14秒前
14秒前
活泼莫英发布了新的文献求助10
14秒前
颖中竹子完成签到,获得积分10
15秒前
16秒前
SYLH应助看看文献吧采纳,获得10
17秒前
残山醉梦完成签到,获得积分10
17秒前
18秒前
18秒前
朱可芯发布了新的文献求助10
18秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
A Dictionary of Education 220
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831932
求助须知:如何正确求助?哪些是违规求助? 3374210
关于积分的说明 10483852
捐赠科研通 3094099
什么是DOI,文献DOI怎么找? 1703329
邀请新用户注册赠送积分活动 819378
科研通“疑难数据库(出版商)”最低求助积分说明 771463