Joint evaluation and prediction of SOH and RUL for lithium batteries based on a GBLS booster multi-task model

计算机科学 估计员 过度拟合 数据挖掘 算法 人工智能 人工神经网络 统计 数学
作者
Pan Yang,Hau-Hung Yang,XiangPei Meng,Chung R. Song,Tonghao He,Jingye Cai,Y. Xie,Ke Xu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:75: 109741-109741 被引量:24
标识
DOI:10.1016/j.est.2023.109741
摘要

From the perspective of safe electric vehicle operation, accurately assessing the state of health (SOH) and remaining useful life (RUL) of lithium batteries holds paramount importance. This paper introduces a novel multi-task learning data-driven model named GBLS Booster, focusing on the joint estimation and prediction of SOH and RUL. GBLS Booster integrates the strengths of GBLS, offering reduced computation, swift computing speed, and harnesses the powerful feature extraction capabilities of the CNN-Transformers algorithm-based Booster. Additionally, the Tree-structured Parzen Estimator (TPE) algorithm is applied to optimize the model. In this study, 10 healthy indicators (HIs) are devised to capture variations in battery SOH. These HIs are derived from readily available sensor data, encompassing current, voltage, and temperature information. The random forest method (RF) is employed to further refine features and minimize data dimensions. Concerning the RUL prediction, the capacity data is often plagued by significant noise. To address this challenge, the complete empirical mode decomposition (CEEMDAN) method is employed for noise reduction decomposition, followed by the utilization of the Pearson correlation coefficient to eliminate noisy data points. The proposed method is rigorously evaluated using the NASA dataset and CLACE dataset for modeling simulation and verification. Comparative analysis with other algorithms is conducted. The results demonstrate the superior performance of the proposed model, showcasing exceptional accuracy (with a minimum Mean Absolute Percentage Error (MAPE) of 0.3348 % for SOH and a minimum Relative Error (RE) of 0.01 % for RUL), robustness, and generalization capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有魅力的若菱关注了科研通微信公众号
1秒前
慈祥的鸣凤完成签到 ,获得积分10
3秒前
4秒前
6秒前
7秒前
栗子完成签到,获得积分10
8秒前
duolaAmeng完成签到,获得积分10
10秒前
10秒前
Bronya发布了新的文献求助10
10秒前
12秒前
搜集达人应助开心雨采纳,获得10
12秒前
科研通AI5应助yyymmma采纳,获得10
15秒前
深情安青应助钰LM采纳,获得10
15秒前
16秒前
前进大佬发布了新的文献求助10
17秒前
今后应助新威宝贝采纳,获得10
19秒前
22秒前
22秒前
热心市民应助缓慢的如波采纳,获得20
26秒前
27秒前
爆米花应助小郭子采纳,获得10
27秒前
钰LM发布了新的文献求助10
28秒前
两腿一蹬与世无争完成签到,获得积分10
28秒前
在学海中挣扎完成签到 ,获得积分10
28秒前
李123456关注了科研通微信公众号
31秒前
憨寒完成签到,获得积分10
32秒前
666完成签到,获得积分20
33秒前
科研乞丐发布了新的文献求助10
35秒前
莱芙完成签到 ,获得积分10
35秒前
foxdaopo完成签到,获得积分10
36秒前
mylaodao完成签到,获得积分0
36秒前
37秒前
wwx完成签到,获得积分10
39秒前
李123456发布了新的文献求助10
39秒前
好的完成签到,获得积分10
39秒前
乌梅橘子茶完成签到,获得积分10
42秒前
丘比特应助yls采纳,获得10
42秒前
陈时懿发布了新的文献求助10
42秒前
赵懂发布了新的文献求助10
42秒前
44秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852