Fatigue crack growth in wheel-rail rolling-sliding contact: A perspective of elastic-plastic fracture mechanics criterion

裂缝闭合 材料科学 裂纹扩展阻力曲线 牵引(地质) 结构工程 有限元法 裂纹尖端张开位移 巴黎法 冯·米塞斯屈服准则 断裂力学 强度因子 应力集中 接触力学 复合材料 工程类 机械工程
作者
Xiongfei Zhou,Шуай Ли,Jinneng Wang,Kaiyun Wang,Lin Jing
出处
期刊:Wear [Elsevier BV]
卷期号:530-531: 205069-205069 被引量:1
标识
DOI:10.1016/j.wear.2023.205069
摘要

The presence of fatigue crack is a common damage pattern in railway wheel-rail system, which will reduce service life and increase the maintenance costs of railway transportation. In this study, a two-stage simulation strategy was proposed to investigate the elastic-plastic fatigue crack growth behaviour of the wheel and rail, where a three-dimensional wheel-rail rolling contact finite element model was first built to solve the elastic-plastic wheel-rail contact pressure and tangential traction modification, and then a simplified three-dimensional finite element model of the wheel and rail inserted with vertical cracks under the equivalent moving load was built to explore the fatigue crack growth. Taking the J-integral at the crack tip as an elastic-plastic crack growth parameter, the influences of crack face friction, crack depth and traction coefficient on the crack growth were elucidated. Meanwhile, the competing mechanisms of wheel/rail wear and fatigue crack growth under rolling-sliding contact condition was illuminated based on the Archard wear model. The simulation results indicate that two critical locations for crack growth appear during the contact load approaching and departing from the crack. The Mises stress near the deepest crack tip exceeds the yield stress, causing a small plastic zone with the greatest crack growth rate. The reduction in the crack face friction, and/or the increase in crack depth and traction coefficient will accelerate the propagation of fatigue crack. In the case of only normal contact load or rolling-sliding contact (μ ≤ 0.375), the crack growth on the wheel and rail is dominant compared to wear and crack will continue to grow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅含灵完成签到 ,获得积分10
2秒前
动听的秋白完成签到 ,获得积分10
10秒前
Moonchild完成签到 ,获得积分10
18秒前
kanong完成签到,获得积分0
22秒前
Alandia完成签到 ,获得积分10
23秒前
yznfly应助zhao采纳,获得30
28秒前
迷人的沛山完成签到,获得积分10
35秒前
coolkid应助科研通管家采纳,获得10
39秒前
coolkid应助科研通管家采纳,获得10
39秒前
coolkid应助科研通管家采纳,获得10
39秒前
coolkid应助科研通管家采纳,获得10
39秒前
coolkid应助科研通管家采纳,获得10
39秒前
香蕉觅云应助科研通管家采纳,获得10
39秒前
bkagyin应助科研通管家采纳,获得10
39秒前
不能吃太饱完成签到 ,获得积分10
39秒前
江幻天完成签到,获得积分10
41秒前
小刺猬完成签到,获得积分10
41秒前
曾珍完成签到 ,获得积分10
45秒前
璐璐完成签到 ,获得积分10
49秒前
绿袖子完成签到,获得积分10
56秒前
群山完成签到 ,获得积分10
1分钟前
Song完成签到 ,获得积分10
1分钟前
绿色心情完成签到 ,获得积分10
1分钟前
maclogos完成签到,获得积分10
1分钟前
云飞扬应助聪慧芷巧采纳,获得10
1分钟前
彗星入梦完成签到 ,获得积分10
1分钟前
昏睡的蟠桃发布了新的文献求助200
1分钟前
西瓜完成签到 ,获得积分10
1分钟前
bzdjsmw完成签到 ,获得积分10
1分钟前
独特的忆彤完成签到 ,获得积分10
1分钟前
1分钟前
浅辰完成签到 ,获得积分10
1分钟前
孤独君浩发布了新的文献求助10
1分钟前
心流中的麋鹿完成签到,获得积分10
1分钟前
kevin完成签到,获得积分10
1分钟前
学习使勇哥进步完成签到 ,获得积分10
1分钟前
昱昱完成签到 ,获得积分10
1分钟前
有魅力天抒完成签到 ,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
1分钟前
dhts应助孤独君浩采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946199
求助须知:如何正确求助?哪些是违规求助? 3491114
关于积分的说明 11058987
捐赠科研通 3222060
什么是DOI,文献DOI怎么找? 1780807
邀请新用户注册赠送积分活动 865846
科研通“疑难数据库(出版商)”最低求助积分说明 800083