Universal adversarial backdoor attacks to fool vertical federated learning

后门 计算机科学 任务(项目管理) 人工智能 机器学习 背景(考古学) 脆弱性(计算) 对抗制 计算机安全 数据挖掘 工程类 古生物学 系统工程 生物
作者
Peng Chen,Xin Du,Zhihui Lu,Hongfeng Chai
出处
期刊:Computers & Security [Elsevier BV]
卷期号:137: 103601-103601 被引量:1
标识
DOI:10.1016/j.cose.2023.103601
摘要

Vertical federated learning (VFL) is a privacy-preserving distribution learning paradigm that enables participants, owning different features of the same sample space to train a machine learning model collaboratively while retaining their data locally. This paradigm facilitates improved efficiency and security for participants such as financial or medical fields, making VFL an essential component of data-driven Artificial Intelligence systems. Nevertheless, the partitioned structure of VFL can be exploited by adversaries to inject a backdoor, enabling them to manipulate the VFL predictions. In this paper, we aim to investigate the vulnerability of VFL in the context of binary classification tasks. To this end, we define a threat model for backdoor attacks in VFL and introduce a universal adversarial backdoor (UAB) attack to poison the predictions of VFL. The UAB attack, consisting of universal trigger generation and clean-label backdoor injection, is incorporated during the VFL training at specific iterations. This is achieved by alternately optimizing VFL sub-problems' universal trigger and model parameters. Our work distinguishes itself from existing studies on designing backdoor attacks for VFL, as those require the knowledge of auxiliary information that is not accessible within the split VFL architecture. In contrast, our approach does not require additional data to execute the attack. On the real-world datasets, our approach surpasses existing state-of-the-art methods, achieving up to 100% backdoor task performance while maintaining the main task performance. Our results in this paper make a major advance in revealing the hidden backdoor risks of VFL, hence paving the way for the future development of secure VFL. Our results in this paper make a major advance in revealing the hidden backdoor risks of VFL, hence paving the way for the future development of secure VFL applications such as finance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CipherSage应助淡然如风采纳,获得10
2秒前
Shaw完成签到,获得积分10
3秒前
3秒前
4秒前
huahua发布了新的文献求助10
4秒前
jc发布了新的文献求助10
5秒前
可爱诗槐发布了新的文献求助10
5秒前
5秒前
潇潇发布了新的文献求助10
5秒前
细心的逍遥完成签到,获得积分10
6秒前
lili发布了新的文献求助10
8秒前
天天快乐应助MANGMANG采纳,获得10
9秒前
en完成签到,获得积分10
9秒前
Leofar发布了新的文献求助10
9秒前
11秒前
归尘发布了新的文献求助10
11秒前
Chenq1nss发布了新的文献求助10
11秒前
COCO完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
拾英完成签到,获得积分10
13秒前
15秒前
Owen应助666采纳,获得10
16秒前
16秒前
6666发布了新的文献求助10
17秒前
Yolo发布了新的文献求助10
17秒前
开朗寇发布了新的文献求助10
18秒前
黑YA发布了新的文献求助10
18秒前
jc发布了新的文献求助10
19秒前
追寻冰淇淋应助luca采纳,获得30
20秒前
20秒前
坚守初心完成签到,获得积分10
21秒前
SYLH应助HY采纳,获得20
22秒前
赘婿应助牛顿的苹果采纳,获得10
23秒前
1223344444完成签到 ,获得积分10
24秒前
端庄雅山完成签到,获得积分10
25秒前
25秒前
落落发布了新的文献求助30
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959477
求助须知:如何正确求助?哪些是违规求助? 3505697
关于积分的说明 11125320
捐赠科研通 3237538
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802868