超分子化学
聚合
透视图(图形)
纳米技术
聚合物
材料科学
氢键
疏水效应
单体
化学物理
计算机科学
化学
分子
复合材料
有机化学
人工智能
作者
Zizhuo Zhao,Shujing Lei,Min Zeng,Meng Huo
出处
期刊:Aggregate
[Wiley]
日期:2023-09-10
卷期号:5 (1)
被引量:32
摘要
Abstract Polymerization‐induced self‐assembly (PISA) enables the simultaneous growth and self‐assembly of block copolymers in one pot and therefore has developed into a high‐efficiency platform for the preparation of polymer assemblies with high concentration and excellent reproducibility. During the past decade, the driving force of PISA has extended from hydrophobic interactions to other supramolecular interactions, which has greatly innovated the design of PISA, enlarged the monomer/solvent toolkit, and endowed the polymer assemblies with intrinsic dynamicity and responsiveness. To unravel the important role of driving forces in the formation of polymeric assemblies, this review summarized the recent development of PISA from the perspective of driving forces. Motivated by this goal, here we give a brief overview of the basic principles of PISA and systematically discuss the various driving forces in the PISA system, including hydrophobic interactions, hydrogen bonding, electrostatic interactions, and π‐π interactions. Furthermore, PISA systems that are driven and regulated by crystallization or liquid crystalline ordering were also highlighted.
科研通智能强力驱动
Strongly Powered by AbleSci AI