Harnessing the Lysosomal Sorting Signals of the Cation-Independent Mannose-6-Phosphate Receptor for Targeted Degradation of Membrane Proteins

化学 溶酶体 甘露糖 6-磷酸甘露糖 甘露糖6-磷酸受体 蛋白质水解 膜蛋白 蛋白质靶向 细胞生物学 生物化学 蛋白质降解 受体 内化 生物 生长因子
作者
Jinfeng Yu,Haonan Li,Fang Tong,Chengyu Yun,Xue Liu,Jingyao Xu,Xianxing Jiang,Xiaoqing Cai
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (34): 19107-19119 被引量:35
标识
DOI:10.1021/jacs.3c07687
摘要

Membrane proteins are a crucial class of therapeutic targets that remain challenging to modulate using traditional occupancy-driven inhibition strategies or current proteolysis-targeting degradation approaches. Here, we report that the inherent endolysosomal sorting machinery can be harnessed for the targeted degradation of membrane proteins. A new degradation technique, termed signal-mediated lysosome-targeting chimeras (SignalTACs), was developed by genetically fusing the signaling motif from the cation-independent mannose-6-phosphate receptor (CI-M6PR) to a membrane protein binder. Antibody-based SignalTACs were constructed with the CI-M6PR signal peptides fused to the C-terminus of both heavy and light chains of IgG. We demonstrated the scope of this platform technology by degrading five pathogenesis-related membrane proteins, including HER2, EGFR, PD-L1, CD20, and CD71. Furthermore, two simplified constructs of SignalTACs, nanobody-based and peptide-based SignalTACs, were created and shown to promote the lysosomal degradation of target membrane proteins. Compared to the parent antibodies, SignalTACs exhibited significantly higher efficiency in inhibiting tumor cell growth both in vitro and in vivo. This work provides a simple, general, and robust strategy for degrading membrane proteins with molecular precision and may represent a powerful platform with broad research and therapeutic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCL应助ZHT采纳,获得20
刚刚
万能图书馆应助zwxzwx采纳,获得10
刚刚
CodeCraft应助Lll采纳,获得10
刚刚
hm发布了新的文献求助10
1秒前
2秒前
水shui完成签到,获得积分10
2秒前
浮游应助冯淑婷采纳,获得10
2秒前
3秒前
小老虎Milly完成签到,获得积分10
3秒前
wanci应助艾欧大贝采纳,获得10
3秒前
4秒前
个性初夏发布了新的文献求助10
4秒前
yu完成签到,获得积分10
5秒前
科研通AI5应助落后鞋子采纳,获得10
6秒前
7秒前
Wang发布了新的文献求助10
7秒前
于海阔关注了科研通微信公众号
8秒前
8秒前
力劈华山完成签到,获得积分10
8秒前
顾矜应助流川采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
顾矜应助毛毛弟采纳,获得10
9秒前
ohh完成签到,获得积分10
9秒前
小团子完成签到 ,获得积分10
10秒前
粉色完成签到,获得积分10
10秒前
10秒前
今后应助追寻的依柔采纳,获得10
11秒前
11秒前
现实的语兰完成签到,获得积分10
11秒前
mumu发布了新的文献求助30
11秒前
12秒前
gzslwddhjx发布了新的文献求助10
13秒前
浮游应助小花采纳,获得10
13秒前
14秒前
14秒前
糊涂的丹南完成签到 ,获得积分10
15秒前
等待的小兔子完成签到,获得积分20
15秒前
lio完成签到,获得积分10
15秒前
酷炫翠桃举报单纯乞求助涉嫌违规
15秒前
香蕉觅云应助江河JT采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917