FsaNet: Frequency Self-Attention for Semantic Segmentation

计算机科学 图像分割 分割 人工智能 语音识别 自然语言处理 模式识别(心理学) 计算机视觉
作者
Fengyu Zhang,Ashkan Panahi,Guangjun Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4757-4772 被引量:13
标识
DOI:10.1109/tip.2023.3305090
摘要

Considering the spectral properties of images, we propose a new self-attention mechanism with highly reduced computational complexity, up to a linear rate. To better preserve edges while promoting similarity within objects, we propose individualized processes over different frequency bands. In particular, we study a case where the process is merely over low-frequency components. By ablation study, we show that low frequency self-attention can achieve very close or better performance relative to full frequency even without retraining the network. Accordingly, we design and embed novel plug-and-play modules to the head of a CNN network that we refer to as FsaNet. The frequency self-attention 1) requires only a few low frequency coefficients as input, 2) can be mathematically equivalent to spatial domain self-attention with linear structures, 3) simplifies token mapping (1×1 convolution) stage and token mixing stage simultaneously. We show that frequency self-attention requires 87.29% ~ 90.04% less memory, 96.13% ~ 98.07% less FLOPs, and 97.56% ~ 98.18% in run time than the regular self-attention. Compared to other ResNet101-based self-attention networks, FsaNet achieves a new state-of-the-art result (83.0% mIoU) on Cityscape test dataset and competitive results on ADE20k and VOCaug. FsaNet can also enhance MASK R-CNN for instance segmentation on COCO. In addition, utilizing the proposed module, Segformer can be boosted on a series of models with different scales, and Segformer-B5 can be improved even without retraining. Code is accessible at https://github.com/zfy-csu/FsaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
kikiki发布了新的文献求助10
3秒前
5秒前
汉堡包应助沙耶采纳,获得10
7秒前
江城一霸发布了新的文献求助30
7秒前
忧伤的丁丁完成签到,获得积分10
8秒前
果咩发布了新的文献求助10
8秒前
冰魂应助啦啦啦啦采纳,获得10
9秒前
李健应助狂暴的蜗牛0713采纳,获得10
9秒前
余生9979完成签到 ,获得积分10
9秒前
CodeCraft应助kikiki采纳,获得10
10秒前
Jasper应助猪猪hero采纳,获得30
11秒前
12秒前
14秒前
流氓恐龙发布了新的文献求助10
17秒前
18秒前
猪猪hero发布了新的文献求助10
19秒前
我是老大应助sunny采纳,获得10
21秒前
22秒前
gmchen完成签到,获得积分10
22秒前
cryscilla完成签到,获得积分10
22秒前
PSCs发布了新的文献求助10
23秒前
英姑应助Cold采纳,获得10
23秒前
KaK发布了新的文献求助10
24秒前
24秒前
领导范儿应助欣喜沛芹采纳,获得10
25秒前
John完成签到 ,获得积分10
25秒前
27秒前
28秒前
29秒前
29秒前
一定长发布了新的文献求助20
29秒前
无花果应助BAM采纳,获得10
30秒前
猪猪hero发布了新的文献求助30
30秒前
31秒前
146907350发布了新的文献求助10
33秒前
35秒前
37秒前
粗心的新之完成签到,获得积分10
38秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824320
求助须知:如何正确求助?哪些是违规求助? 3366627
关于积分的说明 10441642
捐赠科研通 3085849
什么是DOI,文献DOI怎么找? 1697615
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769640