CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion

计算机科学 人工智能 模态(人机交互) 模式识别(心理学) 图像融合 融合 特征(语言学) 融合规则 特征提取 图像(数学) 计算机视觉 语言学 哲学
作者
Zixiang Zhao,Haowen Bai,Jiangshe Zhang,Yulun Zhang,Shuang Xu,Zudi Lin,Radu Timofte,Luc Van Gool
标识
DOI:10.1109/cvpr52729.2023.00572
摘要

Multi-modality (MM) image fusion aims to render fused images that maintain the merits of different modalities, e.g., functional highlight and detailed textures. To tackle the challenge in modeling cross-modality features and decomposing desirable modality-specific and modality-shared features, we propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network. Firstly, CDDFuse uses Restormer blocks to extract cross-modality shallow features. We then introduce a dual-branch Transformer-CNN feature extractor with Lite Transformer (LT) blocks leveraging long-range attention to handle low-frequency global features and Invertible Neural Networks (INN) blocks focusing on extracting high-frequency local information. A correlation-driven loss is further proposed to make the low-frequency features correlated while the high-frequency features uncorrelated based on the embedded information. Then, the LT-based global fusion and INN-based local fusion layers output the fused image. Extensive experiments demonstrate that our CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion. We also show that CDDFuse can boost the performance in downstream infrared-visible semantic segmentation and object detection in a unified benchmark. The code is available at https://github.om/haozixiang1228/MMIF-CDDFuse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助kelexh采纳,获得10
1秒前
1秒前
生动的煎蛋完成签到 ,获得积分10
2秒前
阿东c发布了新的文献求助10
2秒前
2秒前
Oyster7发布了新的文献求助10
2秒前
乐乐应助咿咿呀呀采纳,获得10
3秒前
3秒前
4秒前
充电宝应助彳亍而行采纳,获得10
5秒前
juju发布了新的文献求助10
8秒前
代包子完成签到,获得积分20
8秒前
猪猪hero发布了新的文献求助10
9秒前
xiaoxiang完成签到,获得积分10
9秒前
机智乐蕊完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
16秒前
科研通AI5应助典雅的黄豆采纳,获得10
16秒前
香蕉觅云应助ckz采纳,获得10
16秒前
17秒前
18秒前
19秒前
猪猪hero发布了新的文献求助10
21秒前
似水流年发布了新的文献求助10
21秒前
22秒前
咿咿呀呀发布了新的文献求助10
22秒前
22秒前
22秒前
浪迹天涯完成签到,获得积分10
22秒前
LiuJinhui发布了新的文献求助10
22秒前
peiter发布了新的文献求助10
23秒前
飞飞飞完成签到,获得积分10
23秒前
23秒前
STZHEN发布了新的文献求助10
24秒前
万能图书馆应助张YI采纳,获得10
25秒前
27秒前
kelexh发布了新的文献求助10
27秒前
Duke发布了新的文献求助10
27秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833450
求助须知:如何正确求助?哪些是违规求助? 3375894
关于积分的说明 10490983
捐赠科研通 3095467
什么是DOI,文献DOI怎么找? 1704367
邀请新用户注册赠送积分活动 820033
科研通“疑难数据库(出版商)”最低求助积分说明 771703