葫芦属
脯氨酸
抗氧化剂
盐度
非生物胁迫
食品科学
叶绿素
锌
园艺
化学
过氧化氢酶
超氧化物歧化酶
生物
生物化学
生态学
有机化学
氨基酸
基因
作者
Ayesha Javeed,Shakil Ahmed,Rehana Sardar
摘要
Salt stress is a major abiotic stress that affects the world's agricultural soils and crop yield, the system that ensures food production. In the present study, three different concentrations of zinc oxide nanoparticles (250, 500 and 750ZnONPsmg L-1 ) were applied by soil drenching. The treatments aimed to improve the phytochemical characteristics of Lagenaria siceraria L. (bottle gourd) by lowering the oxidative stress brought on by salinity stress (200ppm NaF). Green synthesised ZnO NPs were prepared, having hexagonal and spherical shapes and sizes 16-35nm. Salt stress reduced fresh and dry biomass of plants and improved production of proline. ZnO NPs improved antioxidant response by enhancing catalase, ascorbate peroxidase, superoxide dismutase and peroxidase activities, and protecting cellular structures by eliminating free radicals and reactive oxygen species. The 500mg L-1 ZnO NPs treatment improved total chlorophyll (31%), total soluble sugars (23%) and maintained the gas exchange parameters under salt stress. This treatment also enhanced the biosynthesis of osmotic regulators (proline) by 19%, Na+ by 22% and Zn2+ by 17%, assisting mitigation of salt stress-mediated toxicity in plants. This study demonstrates that ZnO NP-treated seedlings show improved growth attributes, suggesting that ZnO NPs could be advantageous for L. siceraria cultivation in salt polluted areas and could be utilised in place of conventional Zn fertiliser for better crop yield.
科研通智能强力驱动
Strongly Powered by AbleSci AI