Preoperative prediction of tumor budding in rectal cancer using multiple machine learning algorithms based on MRI T2WI radiomics

接收机工作特性 医学 分级(工程) 算法 磁共振成像 无线电技术 人工智能 结直肠癌 特征选择 支持向量机 放射科 机器学习 计算机科学 癌症 内科学 工程类 土木工程
作者
Xueting Qu,Liang Zhang,Weina Ji,Jizheng Lin,Guohua Wang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:2
标识
DOI:10.3389/fonc.2023.1267838
摘要

Objective This study aimed to explore the radiomics model based on magnetic resonance imaging (MRI) T2WI and compare the value of different machine algorithms in preoperatively predicting tumor budding (TB) grading in rectal cancer. Methods A retrospective study was conducted on 266 patients with preoperative rectal MRI examinations, who underwent complete surgical resection and confirmed pathological diagnosis of rectal cancer. Among them, patients from Qingdao West Coast Hospital were assigned as the training group (n=172), while patients from other hospitals were assigned as the external validation group (n=94). Regions of interest (ROIs) were delineated, and image features were extracted and dimensionally reduced using the Least Absolute Shrinkage and Selection Operator (LASSO). Eight machine algorithms were used to construct the models, and the diagnostic performance of the models was evaluated and compared using receiver operating characteristic (ROC) curves and the area under the curve (AUC), as well as clinical utility assessment using decision curve analysis (DCA). Results A total of 1197 features were extracted, and after feature selection and dimension reduction, 11 image features related to TB grading were obtained. Among the eight algorithm models, the support vector machine (SVM) algorithm achieved the best diagnostic performance, with accuracy, sensitivity, and specificity of 0.826, 0.949, and 0.723 in the training group, and 0.713, 0.579, and 0.804 in the validation group, respectively. DCA demonstrated the clinical utility of this radiomics model. Conclusion The radiomics model based on MR T2WI can provide an effective and noninvasive method for preoperative TB grading assessment in patients with rectal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
李佳萌完成签到,获得积分10
2秒前
Mm完成签到,获得积分10
3秒前
JamesPei应助碧蓝的往事采纳,获得10
3秒前
Feng发布了新的文献求助10
3秒前
4秒前
丘比特应助CH采纳,获得10
4秒前
5秒前
lvzhechen发布了新的文献求助10
7秒前
烟花应助韦韦采纳,获得10
9秒前
yqb完成签到,获得积分10
9秒前
10秒前
10秒前
LTTY完成签到,获得积分10
12秒前
13秒前
13秒前
mount发布了新的文献求助10
13秒前
淡定的绮兰完成签到,获得积分10
14秒前
生信小菜鸡一枚完成签到,获得积分10
15秒前
qqq完成签到,获得积分10
15秒前
大个应助Math4396采纳,获得10
16秒前
16秒前
韦韦完成签到,获得积分10
17秒前
小王完成签到 ,获得积分10
17秒前
18秒前
隐形曼青应助shimhjy采纳,获得10
18秒前
西洲发布了新的文献求助10
18秒前
zmx发布了新的文献求助10
19秒前
19秒前
19秒前
科研通AI5应助ZYL采纳,获得10
20秒前
Owen应助神唐1采纳,获得10
20秒前
脑洞疼应助niuniu采纳,获得10
21秒前
21秒前
山丘发布了新的文献求助10
22秒前
大勺子发布了新的文献求助10
22秒前
23秒前
我是生信小菜鸟完成签到,获得积分20
24秒前
25秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797685
求助须知:如何正确求助?哪些是违规求助? 3343169
关于积分的说明 10314824
捐赠科研通 3059896
什么是DOI,文献DOI怎么找? 1679129
邀请新用户注册赠送积分活动 806367
科研通“疑难数据库(出版商)”最低求助积分说明 763144