Recent advances in features generation for membrane protein sequences: From multiple sequence alignment to pre‐trained language models

计算机科学 瓶颈 序列(生物学) 启发式 蛋白质测序 计算生物学 人工智能 机器学习 生物信息学 生物 肽序列 生物化学 遗传学 基因 嵌入式系统 操作系统
作者
Yu‐Yen Ou,Quang‐Thai Ho,Heng‐Ta Chang
出处
期刊:Proteomics [Wiley]
卷期号:23 (23-24) 被引量:2
标识
DOI:10.1002/pmic.202200494
摘要

Abstract Membrane proteins play a crucial role in various cellular processes and are essential components of cell membranes. Computational methods have emerged as a powerful tool for studying membrane proteins due to their complex structures and properties that make them difficult to analyze experimentally. Traditional features for protein sequence analysis based on amino acid types, composition, and pair composition have limitations in capturing higher‐order sequence patterns. Recently, multiple sequence alignment (MSA) and pre‐trained language models (PLMs) have been used to generate features from protein sequences. However, the significant computational resources required for MSA‐based features generation can be a major bottleneck for many applications. Several methods and tools have been developed to accelerate the generation of MSAs and reduce their computational cost, including heuristics and approximate algorithms. Additionally, the use of PLMs such as BERT has shown great potential in generating informative embeddings for protein sequence analysis. In this review, we provide an overview of traditional and more recent methods for generating features from protein sequences, with a particular focus on MSAs and PLMs. We highlight the advantages and limitations of these approaches and discuss the methods and tools developed to address the computational challenges associated with features generation. Overall, the advancements in computational methods and tools provide a promising avenue for gaining deeper insights into the function and properties of membrane proteins, which can have significant implications in drug discovery and personalized medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气惜霜完成签到 ,获得积分10
刚刚
璟晔完成签到,获得积分10
1秒前
科研通AI2S应助zimo采纳,获得10
1秒前
highmoon完成签到,获得积分10
1秒前
1秒前
panda_123发布了新的文献求助10
2秒前
丙子哥发布了新的文献求助10
3秒前
李健的小迷弟应助玛丽洁采纳,获得10
5秒前
5秒前
6秒前
哈拉斯发布了新的文献求助10
7秒前
酥瓜完成签到 ,获得积分10
8秒前
9秒前
10秒前
survivaluu发布了新的文献求助10
11秒前
panda_123完成签到,获得积分10
12秒前
LZNUDT发布了新的文献求助10
14秒前
miao完成签到,获得积分10
17秒前
小刘恨香菜完成签到,获得积分10
18秒前
JamesPei应助LZNUDT采纳,获得10
18秒前
公章在我手里完成签到,获得积分10
18秒前
21秒前
22秒前
23秒前
24秒前
24秒前
25秒前
玛丽洁发布了新的文献求助10
29秒前
HuangJunfei发布了新的文献求助10
30秒前
30秒前
斯文败类应助欢喜的依风采纳,获得10
30秒前
天玄发布了新的文献求助10
30秒前
31秒前
杨向南完成签到,获得积分10
31秒前
就叫柠檬吧应助mayimo采纳,获得10
32秒前
传奇3应助yinying采纳,获得10
33秒前
搬砖人完成签到,获得积分10
34秒前
ran发布了新的文献求助30
36秒前
invisiable发布了新的文献求助10
37秒前
充电宝应助hunter采纳,获得10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800147
求助须知:如何正确求助?哪些是违规求助? 3345461
关于积分的说明 10325234
捐赠科研通 3061940
什么是DOI,文献DOI怎么找? 1680663
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763525