Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification

高光谱成像 计算机科学 模式识别(心理学) 人工智能 图形 冗余(工程) 卷积神经网络 水准点(测量) 特征(语言学) 融合 语言学 哲学 大地测量学 理论计算机科学 地理 操作系统
作者
Jie Liu,Renxiang Guan,Zihao Li,Jiaxuan Zhang,Yaowen Hu,Xueyong Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (23): 5483-5483 被引量:16
标识
DOI:10.3390/rs15235483
摘要

Graph convolutional networks (GCNs) are a promising approach for addressing the necessity for long-range information in hyperspectral image (HSI) classification. Researchers have attempted to develop classification methods that combine strong generalizations with effective classification. However, the current HSI classification methods based on GCN present two main challenges. First, they overlook the multi-view features inherent in HSIs, whereas multi-view information interacts with each other to facilitate classification tasks. Second, many algorithms perform a rudimentary fusion of extracted features, which can result in information redundancy and conflicts. To address these challenges and exploit the strengths of multiple features, this paper introduces an adaptive multi-feature fusion GCN (AMF-GCN) for HSI classification. Initially, the AMF-GCN algorithm extracts spectral and textural features from the HSIs and combines them to create fusion features. Subsequently, these three features are employed to construct separate images, which are then processed individually using multi-branch GCNs. The AMG-GCN aggregates node information and utilizes an attention-based feature fusion method to selectively incorporate valuable features. We evaluated the model on three widely used HSI datasets, i.e., Pavia University, Salinas, and Houston-2013, and achieved accuracies of 97.45%, 98.03%, and 93.02%, respectively. Extensive experimental results show that the classification performance of the AMF-GCN on benchmark HSI datasets is comparable to those of state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伢子发布了新的文献求助10
刚刚
最好的完成签到,获得积分10
1秒前
积极钧完成签到,获得积分10
2秒前
2秒前
Mr.Jian完成签到,获得积分10
2秒前
null完成签到,获得积分10
3秒前
zhang完成签到,获得积分10
3秒前
靓丽的奇异果完成签到,获得积分10
3秒前
NexusExplorer应助nannan采纳,获得20
3秒前
Zard完成签到,获得积分10
4秒前
Janice完成签到,获得积分10
4秒前
my196755完成签到,获得积分10
4秒前
apckkk完成签到 ,获得积分10
5秒前
李子完成签到,获得积分10
5秒前
6秒前
6秒前
chenamy完成签到,获得积分10
6秒前
优雅面包完成签到,获得积分10
6秒前
ertredffg完成签到,获得积分10
8秒前
en完成签到,获得积分10
9秒前
9秒前
考研小白发布了新的文献求助10
9秒前
骑猪看日落完成签到,获得积分10
10秒前
轻松的小虾米完成签到,获得积分10
10秒前
April完成签到,获得积分10
11秒前
方百招完成签到,获得积分10
11秒前
yiyiyi完成签到,获得积分10
11秒前
优雅面包发布了新的文献求助10
11秒前
学术老6完成签到,获得积分10
12秒前
番茄黄瓜芝士片完成签到 ,获得积分10
13秒前
岳小龙发布了新的文献求助10
14秒前
xhm完成签到 ,获得积分10
15秒前
乐观健柏完成签到,获得积分10
17秒前
李德胜完成签到,获得积分10
18秒前
18秒前
19秒前
时尚的菠萝完成签到,获得积分10
19秒前
ee完成签到,获得积分10
19秒前
yicheng完成签到,获得积分10
19秒前
hetao286完成签到,获得积分10
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816002
求助须知:如何正确求助?哪些是违规求助? 3359464
关于积分的说明 10402883
捐赠科研通 3077360
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767743