Locally graphitized biomass-derived porous carbon nanosheets with encapsulated Fe3O4 nanoparticles for supercapacitor applications

超级电容器 材料科学 功率密度 碳纤维 电解质 储能 化学工程 生物量(生态学) 纳米颗粒 纳米技术 电容 电导率 电极 复合材料 化学 功率(物理) 物理 海洋学 物理化学 量子力学 复合数 工程类 地质学
作者
Biao Yang,Deyi Zhang,Yixuan Li,Yulian He,Yang Li,Zheyuan Li,Bing Wang,Zhiyong Han,Kunjie Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:479: 147662-147662 被引量:19
标识
DOI:10.1016/j.cej.2023.147662
摘要

Waste biomass-derived porous carbons offer significant application prospects, especially in the field of carbon-based supercapacitors, while simultaneously reducing carbon emissions. However, their relatively low conductivity and charge storage capacity have resulted in a low energy density for supercapacitor applications, thereby significantly impeding their large-scale commercial application. At present, comprehensively enhancing the performance of biomass-derived carbon-based supercapacitors (BC-SCs), including energy density, power density, cyclic stability, and rate capability, remains a challenge. To overcome this challenge, Fe3O4 nanoparticles with high conductivity are successfully encapsulated within biomass-derived carbon nanosheets. In conjunction with a localized graphitization strategy, a novel electrode material, locally graphitized biomass-derived hierarchical porous carbon nanosheets with encapsulated Fe3O4 nanoparticles, possessing high specific surface area and conductivity, is successfully prepared. Coupled with TFA electrolyte featuring a high working voltage of 1.4 V, a significant enhancement in the energy density is achieved for BC-SCs, along with ultra-long cyclic durability and excellent fast-charging capabilities. The BC-SCs assembled achieves a high energy density of 15.80 kW kg−1 at a power density of 483 W kg−1. Even at a high power density of 16.40 kW kg−1, the energy density remains at 11.4 Wh kg−1. After 100,000 cycles, the capacitance retention remains remarkably high at 99.6 %. By utilizing hydroquinone as a redox additive, the energy density can be further improved to 32.0 Wh kg−1. This work would pave the way for the large-scale commercialization of BC-SCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Carlito采纳,获得30
1秒前
wendy完成签到,获得积分10
2秒前
蓝月发布了新的文献求助10
3秒前
小常发布了新的文献求助10
3秒前
4秒前
脑洞疼应助aaaale采纳,获得10
4秒前
cuiyy发布了新的文献求助50
5秒前
123完成签到,获得积分10
7秒前
Bethune124完成签到 ,获得积分10
7秒前
7秒前
芽芽豆完成签到 ,获得积分10
8秒前
orixero应助beiyangtidu采纳,获得10
8秒前
8秒前
9秒前
每天都要开心完成签到,获得积分10
9秒前
10秒前
我好想睡完成签到,获得积分10
10秒前
10秒前
翻翻完成签到,获得积分10
11秒前
LSS发布了新的文献求助20
12秒前
新星是欣完成签到,获得积分10
12秒前
LIN完成签到,获得积分10
13秒前
赘婿应助dd采纳,获得10
14秒前
田様应助hjdmkvm采纳,获得10
14秒前
14秒前
小常完成签到,获得积分10
14秒前
阳光大有完成签到,获得积分10
14秒前
14秒前
SYLH应助蜡笔小新采纳,获得10
15秒前
茄子发布了新的文献求助10
15秒前
图南完成签到,获得积分10
15秒前
上好佳发布了新的文献求助10
15秒前
159完成签到,获得积分10
15秒前
drrui完成签到 ,获得积分10
16秒前
许甜甜鸭应助非鱼采纳,获得10
16秒前
17秒前
俊逸念云发布了新的文献求助10
17秒前
华仔应助jiangjiang采纳,获得10
18秒前
xuan完成签到,获得积分10
18秒前
Glassy应助锤子采纳,获得20
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817577
求助须知:如何正确求助?哪些是违规求助? 3360882
关于积分的说明 10410010
捐赠科研通 3078935
什么是DOI,文献DOI怎么找? 1690894
邀请新用户注册赠送积分活动 814197
科研通“疑难数据库(出版商)”最低求助积分说明 768065