Single-atom Zr embedded Ti4O7 anode coupling with hierarchical CuFe2O4 particle electrodes toward efficient electrooxidation of actual pharmaceutical wastewater

电化学 电解 阳极 废水 材料科学 化学工程 降级(电信) 电极 化学 电催化剂 物理化学 计算机科学 环境工程 环境科学 工程类 电信 电解质
作者
Anqi Wang,Xingxin Liu,Yukai Wen,Yongfu Qiu,Sihao Lv,Manman Xu,Cuilin Meng,Kai Wang,Fengjie Lin,Shuibo Xie,Qiongfang Zhuo
出处
期刊:Water Research [Elsevier BV]
卷期号:245: 120596-120596 被引量:13
标识
DOI:10.1016/j.watres.2023.120596
摘要

Electrocatalytic oxidation is commonly restricted by low degradation efficiency, slow mass transfer, and high energy consumption. Herein, a synergetic electrocatalysis system was developed for removal of various drugs, i.e., atenolol, florfenicol, and diclofenac sodium, as well as actual pharmaceutical wastewater, where the newly-designed single-atom Zr embedded Ti4O7 (Zr/Ti4O7) and hierarchical CuFe2O4 (CFO) microspheres were used as anode and microelectrodes, respectively. In the optimal reaction system, the degradation efficiencies of 40 mg L-1 atenolol, florfenicol, and diclofenac sodium could achieve up to 98.8%, 93.4%, and 85.5% in 120 min with 0.1 g L-1 CFO at current density of 25 mA cm-2. More importantly, in the flow-through reactor, the electrooxidation lasting for 150 min could reduce the COD of actual pharmaceutical wastewater from 432 to 88.6 mg L-1, with a lower energy consumption (25.67 kWh/m3). Meanwhile, the electrooxidation system maintained superior stability and environmental adaptability. DFT theory calculations revealed that the excellent performance of this electrooxidation system could be ascribed to the striking features of the reduced reaction energy barrier by single-atom Zr loading and abundant oxygen vacancies on the Zr/Ti4O7 surface. Moreover, the characterization and experimental results demonstrated that the CFO unique hierarchical structure and synergistic effect between electrodes were also the important factors that could improve the system performance. The findings shed light on the single-atom material design for boosting electrochemical oxidation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fosca完成签到,获得积分10
1秒前
快乐的幻波完成签到,获得积分20
1秒前
艾文完成签到,获得积分10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
故酒应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
诸葛御风应助科研通管家采纳,获得20
4秒前
zjw应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
清脆寄容应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
zjw应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得30
6秒前
大鹏应助科研通管家采纳,获得20
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
艾文发布了新的文献求助30
6秒前
6秒前
研友_nPPzon完成签到,获得积分10
7秒前
Eddy完成签到,获得积分10
8秒前
DuWilliam完成签到,获得积分10
9秒前
Gigi完成签到,获得积分10
9秒前
9秒前
如泣草芥完成签到,获得积分0
10秒前
英姑应助东东采纳,获得10
12秒前
秋迎夏完成签到,获得积分0
13秒前
伶俐耷发布了新的文献求助10
14秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346809
关于积分的说明 10330527
捐赠科研通 3063158
什么是DOI,文献DOI怎么找? 1681402
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728