清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells

等效电路 计算机科学 荷电状态 电池(电) 人工神经网络 拓扑(电路) 电子工程 电压 工程类 人工智能 电气工程 功率(物理) 量子力学 物理
作者
Stefano Leonori,Luca Baldini,Antonello Rizzi,Fabio Massimo Frattale Mascioli
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 7386-7386 被引量:11
标识
DOI:10.3390/en14217386
摘要

Battery Management System (BMS) design for Lithium-ion batteries State of Charge (SoC) prediction has a crucial role in Electric Vehicles (EVs) and smart grids development. The need to design compact, light and fast devices requires finding a suitable trade-off between effectiveness and efficiency. In the literature, it is well emphasized that the application of electrochemical-based methods such as the Pseudo-Two-Dimensional (P2D) model is computationally prohibitive and requires significant simplifications. Conversely, plain Equivalent Circuit Models (ECM) are too simple and unable to represent the cell dynamics. The application of an Ensemble Neural Network (ENN) as Equivalent Neural Network Circuit (ENNC) emerged as a promising solution able to synthesize expressive and computationally efficient models. Indeed, with the support of a suitable dataset, an ENN can be configured to represent a given ECM, modeling each lumped parameter through an assigned Neural Network (NN). Accordingly, the ENNC system is able to keep a physical description of the battery cell while approximating the non-linear dynamic of each component. The paper proposes a novel ENNC battery named Physical Inspired-Equivalent Neural Network Circuit (PI-ENNC) whose ensemble architecture relies on a fractional-order Extended Single Particle (ESP) Lithium-ion cell formulation. The PI-ENNC is designed to approximate the ESP transfer functions referred to the ohmic effects, the electrolyte diffusion and the non-uniform charge distribution in the cell. The proposed model has been tested with three publicly available datasets, investigating the model behavior according to two different training strategies and with different input configurations. In order to prove its effectiveness, results have been compared with a simpler version proposed in a previous work. Results highlight the effectiveness of PI-ENNC in SoC prediction, underlining the importance of designing an ENN architecture that leverages on equations and constraints that reflect the physical phenomena of the cell.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongt05完成签到 ,获得积分10
16秒前
优秀的dd完成签到 ,获得积分10
29秒前
念念完成签到,获得积分10
1分钟前
Shining_Wu完成签到,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
芝麻汤圆完成签到,获得积分10
2分钟前
自然之水完成签到,获得积分10
2分钟前
LaTeXer应助fdj3121采纳,获得30
2分钟前
maodeshu完成签到,获得积分10
2分钟前
fdj3121完成签到,获得积分10
2分钟前
赘婿应助maodeshu采纳,获得10
2分钟前
earthai完成签到,获得积分10
2分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
zhubin完成签到 ,获得积分10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
juan完成签到 ,获得积分10
4分钟前
4分钟前
maodeshu发布了新的文献求助10
4分钟前
xiaxiao完成签到,获得积分0
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得20
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
huangzsdy完成签到,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
稻子完成签到 ,获得积分10
6分钟前
6分钟前
柔弱友菱发布了新的文献求助10
6分钟前
子郁完成签到 ,获得积分10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
爱静静应助科研通管家采纳,获得20
7分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808127
求助须知:如何正确求助?哪些是违规求助? 3352735
关于积分的说明 10360201
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810367
科研通“疑难数据库(出版商)”最低求助积分说明 766058