Convolutional Neural Networks for Multimodal Remote Sensing Data Classification

计算机科学 卷积神经网络 合成孔径雷达 人工智能 深度学习 激光雷达 测距 模式识别(心理学) 高光谱成像 遥感 机器学习 数据挖掘 电信 地质学
作者
Xin Wu,Danfeng Hong,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-10 被引量:225
标识
DOI:10.1109/tgrs.2021.3124913
摘要

In recent years, enormous research has been made to improve the classification performance of single-modal remote sensing (RS) data. However, with the ever-growing availability of RS data acquired from satellite or airborne platforms, simultaneous processing and analysis of multimodal RS data pose a new challenge to researchers in the RS community. To this end, we propose a deep-learning-based new framework for multimodal RS data classification, where convolutional neural networks (CNNs) are taken as a backbone with an advanced cross-channel reconstruction module, called CCR-Net. As the name suggests, CCR-Net learns more compact fusion representations of different RS data sources by the means of the reconstruction strategy across modalities that can mutually exchange information in a more effective way. Extensive experiments conducted on two multimodal RS datasets, including hyperspectral (HS) and light detection and ranging (LiDAR) data, i.e., the Houston2013 dataset, and HS and synthetic aperture radar (SAR) data, i.e., the Berlin dataset, demonstrate the effectiveness and superiority of the proposed CCR-Net in comparison with several state-of-the-art multimodal RS data classification methods. The codes will be openly and freely available at https://github.com/danfenghong/IEEE_TGRS_CCR-Net for the sake of reproducibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
鬼火完成签到,获得积分10
1秒前
脑洞疼应助桉韵沁采纳,获得10
1秒前
Hh发布了新的文献求助10
2秒前
年轻的仙人掌完成签到,获得积分10
3秒前
4秒前
yizhi发布了新的文献求助10
5秒前
wangyr11完成签到,获得积分10
7秒前
66m37发布了新的文献求助10
8秒前
8秒前
半两月光发布了新的文献求助10
8秒前
9秒前
yznfly应助无助的人采纳,获得50
10秒前
pwh关闭了pwh文献求助
10秒前
空空完成签到,获得积分20
10秒前
韭菜仔发布了新的文献求助200
11秒前
枕月听松完成签到,获得积分10
11秒前
12秒前
恋返竹询完成签到,获得积分10
12秒前
努力搞科研完成签到,获得积分10
13秒前
yizhi完成签到,获得积分10
13秒前
万能图书馆应助郭子仪采纳,获得10
14秒前
俏皮的幻灵完成签到,获得积分10
14秒前
桉韵沁发布了新的文献求助10
14秒前
CipherSage应助Hedy采纳,获得10
15秒前
璃月品茶钟离完成签到,获得积分10
16秒前
梦槐完成签到,获得积分10
17秒前
落寞怜南完成签到 ,获得积分10
18秒前
嘻嘻完成签到,获得积分10
18秒前
BB鸟发布了新的文献求助10
18秒前
半两月光完成签到,获得积分10
19秒前
lax完成签到,获得积分10
20秒前
汪汪发布了新的文献求助10
20秒前
VDoo完成签到 ,获得积分10
22秒前
22秒前
哈哈哈完成签到,获得积分10
23秒前
SYLH应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350