The first-principles phase diagram of monolayer nanoconfined water

相图 单层 纳米尺度 化学物理 纳米技术 材料科学 相(物质) 石墨烯 范德瓦尔斯力 电介质 水的性质 电解质 化学 分子 物理化学 光电子学 有机化学 电极
作者
Venkat Kapil,Christoph Schran,Andrea Zen,Ji Chen,Chris J. Pickard,Angelos Michaelides
出处
期刊:Nature [Nature Portfolio]
卷期号:609 (7927): 512-516 被引量:142
标识
DOI:10.1038/s41586-022-05036-x
摘要

Water in nanoscale cavities is ubiquitous and of central importance to everyday phenomena in geology and biology. However, the properties of nanoscale water can be substantially different from those of bulk water, as shown, for example, by the anomalously low dielectric constant of water in nanochannels1, near frictionless water flow2 or the possible existence of a square ice phase3. Such properties suggest that nanoconfined water could be engineered for technological applications in nanofluidics4, electrolyte materials5 and water desalination6. Unfortunately, challenges in experimentally characterizing water at the nanoscale and the high cost of first-principles simulations have prevented the molecular-level understanding required to control the behaviour of water. Here we combine a range of computational approaches to enable a first-principles-level investigation of a single layer of water within a graphene-like channel. We find that monolayer water exhibits surprisingly rich and diverse phase behaviour that is highly sensitive to temperature and the van der Waals pressure acting within the nanochannel. In addition to multiple molecular phases with melting temperatures varying non-monotonically by more than 400 kelvins with pressure, we predict a hexatic phase, which is an intermediate between a solid and a liquid, and a superionic phase with a high electrical conductivity exceeding that of battery materials. Notably, this suggests that nanoconfinement could be a promising route towards superionic behaviour under easily accessible conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ完成签到 ,获得积分10
1秒前
sy关闭了sy文献求助
1秒前
噗噗完成签到,获得积分10
2秒前
yo一天完成签到,获得积分10
2秒前
2秒前
一把过发布了新的文献求助30
2秒前
大个应助聪聪冲冲采纳,获得10
2秒前
3秒前
沉梦志昂完成签到,获得积分10
3秒前
大大彬发布了新的文献求助30
3秒前
4秒前
王三歲完成签到,获得积分10
4秒前
kingwill举报阿湫求助涉嫌违规
4秒前
祎薇完成签到,获得积分10
4秒前
4秒前
LH发布了新的文献求助10
5秒前
白石杏完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
酒酿梅子发布了新的文献求助10
5秒前
所所应助向上采纳,获得10
6秒前
害羞静柏发布了新的文献求助10
7秒前
风荏发布了新的文献求助10
7秒前
小梁呀完成签到 ,获得积分20
7秒前
cc完成签到,获得积分10
7秒前
林深完成签到,获得积分10
8秒前
hhhhf发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
杨兰发布了新的文献求助10
9秒前
商陆发布了新的文献求助10
9秒前
wy.he应助zyt采纳,获得10
9秒前
维尼熊完成签到 ,获得积分10
10秒前
10秒前
wy完成签到,获得积分10
10秒前
酷波er应助沉梦志昂采纳,获得10
10秒前
赘婿应助洋葱超可爱采纳,获得10
10秒前
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804701
求助须知:如何正确求助?哪些是违规求助? 3349568
关于积分的说明 10345175
捐赠科研通 3065662
什么是DOI,文献DOI怎么找? 1683192
邀请新用户注册赠送积分活动 808733
科研通“疑难数据库(出版商)”最低求助积分说明 764723