纳米载体
背景(考古学)
药物输送
纳米技术
纳米医学
再生(生物学)
医学
材料科学
生物
细胞生物学
纳米颗粒
古生物学
作者
Pedro Lavrador,Vítor M. Gaspar,João F. Mano
标识
DOI:10.1016/j.jconrel.2018.01.021
摘要
The development of stimuli-responsive nanomedicines with tunable cargo release is gathering an increased applicability in bone regeneration and precision biomedicine. Yet, the formulation of nanocarriers that explore skeletal-specific stimuli remains remarkably challenging to materialize due to several endogenous and disease-specific barriers that must be considered during particle design stages. Such anatomo-physiological constrains ultimately hinder nanocarriers bioavailability in target bone tissues and impact the overall therapeutic outcome. This review aims to showcase and critically discuss the hurdles encountered upon responsive nanocarriers delivery in the context of skeletal diseases or tissue regeneration scenarios. Such focus is complemented with an in-depth and up-to-date analysis of advances in the development of stimuli-responsive, bone-focused delivery systems. In a holistic perspective, a deeper knowledge of human osteology combined with advances in materials functionalization via simple precision-chemistry is envisioned to incite the manufacture of stimuli-triggered nanomedicines with more realistic potential for clinical translation.
科研通智能强力驱动
Strongly Powered by AbleSci AI