Robust and Flexible Discrete Hashing for Cross-Modal Similarity Search

计算机科学 散列函数 二进制代码 离散优化 动态完美哈希 稳健性(进化) 与K无关的哈希 离群值 通用哈希 量化(信号处理) 二进制数 理论计算机科学 算法 数据挖掘 人工智能 哈希表 完美哈希函数 数学 双重哈希 最优化问题 化学 计算机安全 生物化学 算术 基因
作者
Di Wang,Quan Wang,Xinbo Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 2703-2715 被引量:130
标识
DOI:10.1109/tcsvt.2017.2723302
摘要

Multimodal hashing approaches have gained great success on large-scale cross-modal similarity search applications, due to their appealing computation and storage efficiency. However, it is still a challenge work to design binary codes to represent the original features with good performance in an unsupervised manner. We argue that there are some limitations that need to be further considered for unsupervised multimodal hashing: 1) most existing methods drop the discrete constraints to simplify the optimization, which will cause large quantization error; 2) many methods are sensitive to outliers and noises since they use ℓ 2 -norm in their objective functions which can amplify the errors; and 3) the weight of each modality, which greatly influences the retrieval performance, is manually or empirically determined and may not fully fit the specific training set. The above limitations may significantly degrade the retrieval accuracy of unsupervised multimodal hashing methods. To address these problems, in this paper, a novel hashing model is proposed to efficiently learn robust discrete binary codes, which is referred as Robust and Flexible Discrete Hashing (RFDH). In the proposed RFDH model, binary codes are directly learned based on discrete matrix decomposition, so that the large quantization error caused by relaxation is avoided. Moreover, the ℓ 2,1 -norm is used in the objective function to improve the robustness, such that the learned model is not sensitive to data outliers and noises. In addition, the weight of each modality is adaptively adjusted according to training data. Hence the important modality will get large weights during the hash learning procedure. Owing to above merits of RFDH, it can generate more effective hash codes. Besides, we introduce two kinds of hash function learning methods to project unseen instances into hash codes. Extensive experiments on several well-known large databases demonstrate superior performance of the proposed hash model over most state-of-the-art unsupervised multimodal hashing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助turbo采纳,获得10
1秒前
chi发布了新的文献求助10
3秒前
3秒前
赵hb完成签到,获得积分10
5秒前
6秒前
Achange完成签到,获得积分20
8秒前
9秒前
10秒前
完美世界应助开心樱采纳,获得10
12秒前
科目三应助稳重向南采纳,获得10
17秒前
17秒前
耍酷玉米发布了新的文献求助10
17秒前
cczou发布了新的文献求助10
19秒前
852应助BananaL采纳,获得10
21秒前
21秒前
23秒前
宝乐日玛完成签到,获得积分10
23秒前
老阎应助ddd采纳,获得30
24秒前
Mr.SG完成签到,获得积分10
24秒前
李泉完成签到,获得积分10
27秒前
壮观的黄豆完成签到,获得积分10
27秒前
沉静盼易发布了新的文献求助10
27秒前
SciGPT应助稳重向南采纳,获得10
29秒前
平常的班发布了新的文献求助10
30秒前
34秒前
ding应助热心玉兰采纳,获得10
38秒前
星辰大海应助nicelily采纳,获得10
39秒前
1_1完成签到,获得积分10
39秒前
40秒前
小二郎应助稳重向南采纳,获得10
42秒前
Menlanmt完成签到 ,获得积分10
44秒前
taster完成签到,获得积分10
44秒前
CodeCraft应助黄雪蕊采纳,获得10
45秒前
言午关注了科研通微信公众号
46秒前
隐形曼青应助美好的千愁采纳,获得10
47秒前
50秒前
50秒前
细心妙菡完成签到 ,获得积分10
51秒前
turbo应助文件撤销了驳回
52秒前
54秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921883
求助须知:如何正确求助?哪些是违规求助? 3466729
关于积分的说明 10944315
捐赠科研通 3195451
什么是DOI,文献DOI怎么找? 1765599
邀请新用户注册赠送积分活动 855645
科研通“疑难数据库(出版商)”最低求助积分说明 795019