磁共振成像
材料科学
高强度聚焦超声
纳米医学
微气泡
生物医学工程
纳米技术
超声波
医学
纳米颗粒
放射科
作者
Hailin Tang,Yuan Guo,Li Peng,Hui Fang,Zhigang Wang,Yuanyi Zheng,Haitao Ran,Yu Chen
标识
DOI:10.1021/acsami.8b01967
摘要
As one of the most representative noninvasive therapeutic modalities, high-intensity focused ultrasound (HIFU) has shown great promise for cancer therapy, but its low therapeutic efficacy and biosafety significantly hinder further extensive clinical translation and application. In this work, we report on the construction of a multifunctional theranostic nanoplatform to synergistically enhance the HIFU-therapeutic efficacy based on nanomedicine. A targeted and temperature-responsive theranostic nanoplatform (PFH/DOX@PLGA/Fe3O4-FA) has been designed and fabricated for efficient ultrasound/magnetic resonance dual-modality imaging-guided HIFU/chemo synergistic therapy. Especially, the folate was conjugated onto the surface of the nanoplatform for achieving active targeting to hepatoma cells by receptor-ligand interaction, which facilitates accumulation of the nanoplatforms into the tumor site. The integrated superparamagnetic iron oxide nanoparticles could generate the contrast enhancement in T2-weighted magnetic resonance imaging. By virtue of the thermal effect as generated by HIFU, liquid-gas phase transition of perfluorohexane (PFH) in nanocomposites was induced to generate PFH microbubbles, which achieved the contrast-enhanced ultrasound imaging and significantly improved the HIFU ablation efficacy. The loaded anticancer drugs could be released from the nanocomposites in a controllable manner (both pH and HIFU responsiveness). These multifunctional nanocomposites have been demonstrated to efficiently suppress the tumor growth based on the enhanced and synergistic chemotherapy and HIFU ablation, providing an efficient theranostic nanoplatform for cancer treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI