已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GEM-TREND: a web tool for gene expression data mining toward relevant network discovery

DNA微阵列 基因表达 表达式(计算机科学) 数据集 计算机科学 计算生物学 集合(抽象数据类型) 基因表达谱 数据挖掘 微阵列数据库 基因 表达数量性状基因座 生物 数据库 情报检索 生物信息学 遗传学 人工智能 基因型 单核苷酸多态性 程序设计语言
作者
Chunlai Feng,Michihiro Araki,Ryo Kunimoto,Akiko Tamon,Hiroki Makiguchi,Satoshi Niijima,Gozoh Tsujimoto,Yasushi Okuno
出处
期刊:BMC Genomics [BioMed Central]
卷期号:10 (1) 被引量:33
标识
DOI:10.1186/1471-2164-10-411
摘要

Abstract Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. Conclusion GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at http://cgs.pharm.kyoto-u.ac.jp/services/network .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
不想来这玩完成签到,获得积分10
2秒前
5秒前
Jm完成签到,获得积分10
5秒前
lhn发布了新的文献求助10
6秒前
7秒前
8秒前
小情绪应助读书的时候采纳,获得10
9秒前
9秒前
LLLaiwrite完成签到,获得积分10
9秒前
da发布了新的文献求助10
10秒前
爆米花应助奋斗思柔采纳,获得10
11秒前
sinohan完成签到,获得积分10
11秒前
maguodrgon发布了新的文献求助10
11秒前
归去来兮发布了新的文献求助10
12秒前
小羊发布了新的文献求助10
14秒前
郑总完成签到 ,获得积分10
15秒前
18秒前
20秒前
沉星发布了新的文献求助30
20秒前
小羊完成签到,获得积分10
21秒前
魔幻柜子完成签到,获得积分10
21秒前
MMX发布了新的文献求助10
21秒前
CQ发布了新的文献求助10
22秒前
田様应助ct采纳,获得10
24秒前
SSSSCCCCIIII完成签到,获得积分10
25秒前
Lucas应助hys采纳,获得10
26秒前
Lucas应助归去来兮采纳,获得10
28秒前
wanci应助魔幻柜子采纳,获得30
29秒前
zzzdx发布了新的文献求助10
30秒前
打打应助maguodrgon采纳,获得10
30秒前
31秒前
32秒前
33秒前
33秒前
糖果完成签到 ,获得积分10
33秒前
34秒前
34秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934784
求助须知:如何正确求助?哪些是违规求助? 4202490
关于积分的说明 13057669
捐赠科研通 3976951
什么是DOI,文献DOI怎么找? 2179303
邀请新用户注册赠送积分活动 1195452
关于科研通互助平台的介绍 1106840