已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting

统计 回归 计量经济学 分位数回归 分位数 数学 表征(材料科学) 回归分析 纳米技术 材料科学
作者
Caroline K. Carrico,Chris Gennings,David C. Wheeler,Pam Factor‐Litvak
出处
期刊:Journal of Agricultural Biological and Environmental Statistics [Springer Nature]
卷期号:20 (1): 100-120 被引量:1157
标识
DOI:10.1007/s13253-014-0180-3
摘要

In risk evaluation, the effect of mixtures of environmental chemicals on a common adverse outcome is of interest. However, due to the high dimensionality and inherent correlations among chemicals that occur together, the traditional methods (e.g. ordinary or logistic regression) suffer from collinearity and variance inflation, and shrinkage methods have limitations in selecting among correlated components. We propose a weighted quantile sum (WQS) approach to estimating a body burden index, which identifies "bad actors" in a set of highly correlated environmental chemicals. We evaluate and characterize the accuracy of WQS regression in variable selection through extensive simulation studies through sensitivity and specificity (i.e., ability of the WQS method to select the bad actors correctly and not incorrect ones). We demonstrate the improvement in accuracy this method provides over traditional ordinary regression and shrinkage methods (lasso, adaptive lasso, and elastic net). Results from simulations demonstrate that WQS regression is accurate under some environmentally relevant conditions, but its accuracy decreases for a fixed correlation pattern as the association with a response variable diminishes. Nonzero weights (i.e., weights exceeding a selection threshold parameter) may be used to identify bad actors; however, components within a cluster of highly correlated active components tend to have lower weights, with the sum of their weights representative of the set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SGOM完成签到 ,获得积分10
刚刚
kkkk发布了新的文献求助10
刚刚
2秒前
qyp完成签到,获得积分10
2秒前
3秒前
an12138发布了新的文献求助10
5秒前
PDE完成签到,获得积分10
6秒前
lixiaolu完成签到 ,获得积分10
6秒前
6秒前
结实的忆秋完成签到,获得积分10
7秒前
Bella发布了新的文献求助10
7秒前
wlei完成签到,获得积分10
10秒前
youngyang完成签到 ,获得积分10
10秒前
现代的南风完成签到 ,获得积分10
13秒前
13秒前
浮游应助why采纳,获得10
14秒前
克劳修斯完成签到 ,获得积分10
15秒前
传奇3应助怕孤独的柠檬采纳,获得10
15秒前
15秒前
weed6完成签到,获得积分10
16秒前
16秒前
杨武天一发布了新的文献求助10
16秒前
ryanfeng完成签到,获得积分0
17秒前
18秒前
18秒前
火鸡味锅巴完成签到 ,获得积分10
18秒前
英吹斯挺发布了新的文献求助10
19秒前
19秒前
小叶完成签到 ,获得积分10
21秒前
妍妍最美发布了新的文献求助10
22秒前
23秒前
Santiago发布了新的文献求助10
24秒前
务实擎汉完成签到,获得积分10
28秒前
weed6发布了新的文献求助10
29秒前
kkkk发布了新的文献求助10
29秒前
30秒前
LanceHayward完成签到 ,获得积分10
31秒前
31秒前
33秒前
JamesPei应助dawiye采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401125
求助须知:如何正确求助?哪些是违规求助? 4520125
关于积分的说明 14078609
捐赠科研通 4433209
什么是DOI,文献DOI怎么找? 2434030
邀请新用户注册赠送积分活动 1426168
关于科研通互助平台的介绍 1404766