弹道
计算机科学
高斯过程
代表(政治)
人工智能
匹配(统计)
加速度
运动(物理)
高斯分布
模式识别(心理学)
光流
领域(数学)
集合(抽象数据类型)
数据集
数学
天文
图像(数学)
纯数学
经典力学
物理
统计
量子力学
政治学
程序设计语言
政治
法学
作者
Kihwan Kim,Dongryeol Lee,Irfan Essa
标识
DOI:10.1109/iccv.2011.6126365
摘要
Recognition of motions and activities of objects in videos requires effective representations for analysis and matching of motion trajectories. In this paper, we introduce a new representation specifically aimed at matching motion trajectories. We model a trajectory as a continuous dense flow field from a sparse set of vector sequences using Gaussian Process Regression. Furthermore, we introduce a random sampling strategy for learning stable classes of motions from limited data. Our representation allows for incrementally predicting possible paths and detecting anomalous events from online trajectories. This representation also supports matching of complex motions with acceleration changes and pauses or stops within a trajectory. We use the proposed approach for classifying and predicting motion trajectories in traffic monitoring domains and test on several data sets. We show that our approach works well on various types of complete and incomplete trajectories from a variety of video data sets with different frame rates.
科研通智能强力驱动
Strongly Powered by AbleSci AI